Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany.
Neuroimmunology Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6381-E6389. doi: 10.1073/pnas.1701806114. Epub 2017 Jul 17.
In experimental autoimmune encephalitis (EAE), autoimmune T cells are activated in the periphery before they home to the CNS. On their way, the T cells pass through a series of different cellular milieus where they receive signals that instruct them to invade their target tissues. These signals involve interaction with the surrounding stroma cells, in the presence or absence of autoantigens. To portray the serial signaling events, we studied a T-cell-mediated model of EAE combining in vivo two-photon microscopy with two different activation reporters, the FRET-based calcium biosensor Twitch1 and fluorescent NFAT. In vitro activated T cells first settle in secondary (2°) lymphatic tissues (e.g., the spleen) where, in the absence of autoantigen, they establish transient contacts with stroma cells as indicated by sporadic short-lived calcium spikes. The T cells then exit the spleen for the CNS where they first roll and crawl along the luminal surface of leptomeningeal vessels without showing calcium activity. Having crossed the blood-brain barrier, the T cells scan the leptomeningeal space for autoantigen-presenting cells (APCs). Sustained contacts result in long-lasting calcium activity and NFAT translocation, a measure of full T-cell activation. This process is sensitive to anti-MHC class II antibodies. Importantly, the capacity to activate T cells is not a general property of all leptomeningeal phagocytes, but varies between individual APCs. Our results identify distinct checkpoints of T-cell activation, controlling the capacity of myelin-specific T cells to invade and attack the CNS. These processes may be valuable therapeutic targets.
在实验性自身免疫性脑脊髓炎(EAE)中,自身反应性 T 细胞在归巢中枢神经系统(CNS)之前在外周被激活。在归巢过程中,T 细胞会经过一系列不同的细胞微环境,在这些环境中它们会接收到指示其入侵靶组织的信号。这些信号涉及与周围基质细胞的相互作用,无论是否存在自身抗原。为了描绘连续的信号事件,我们结合体内双光子显微镜和两种不同的激活报告基因(基于 FRET 的钙生物传感器 Twitch1 和荧光 NFAT)研究了一种 T 细胞介导的 EAE 模型。在体外激活的 T 细胞首先在二级(2°)淋巴组织(例如脾脏)中定居,在没有自身抗原的情况下,它们与基质细胞建立短暂的接触,这表现为零星的短暂钙峰。然后,T 细胞离开脾脏进入 CNS,在那里它们首先在软脑膜血管的腔表面滚动和爬行,而没有显示钙活性。穿过血脑屏障后,T 细胞扫描软脑膜间隙寻找呈递自身抗原的细胞(APC)。持续的接触导致长时间的钙活性和 NFAT 易位,这是 T 细胞完全激活的一个衡量标准。这个过程对 MHC Ⅱ类抗体敏感。重要的是,激活 T 细胞的能力不是所有软脑膜吞噬细胞的一般特性,而是个体 APC 之间存在差异。我们的研究结果确定了 T 细胞激活的不同检查点,控制了髓鞘特异性 T 细胞入侵和攻击 CNS 的能力。这些过程可能是有价值的治疗靶点。