Department of Mathematics & Statistics, The College of New Jersey, Ewing, NJ 08628.
Department of Mathematics, Rutgers University, Piscataway, NJ 08854.
Proc Natl Acad Sci U S A. 2017 Aug 1;114(31):E6277-E6286. doi: 10.1073/pnas.1703355114. Epub 2017 Jul 17.
Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis () showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and () discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists.
癌症是一种高度异质的疾病,表现出空间和时间上的变化,这给设计稳健的治疗方法带来了挑战。在这里,我们提出了 VEPART(通过虚拟扩展群体分析治疗稳健性)技术,作为一个集成实验数据、数学建模和统计分析的平台,用于识别稳健的最佳治疗方案。VEPART 从样本群体的时间过程实验数据开始,并使用适合于聚合该样本群体数据的数学模型。使用非参数统计,对样本群体进行放大,并用于创建大量虚拟群体。在 VEPART 的最后一步,通过识别和分析每个虚拟群体中的最佳治疗方法(可能限于一组临床上可行的方案)来评估稳健性。作为概念验证,我们已经将 VEPART 方法应用于研究黑色素瘤小鼠模型中接受免疫刺激溶瘤病毒和树突状细胞疫苗治疗的反应稳健性。我们的分析表明,实验中使用的治疗方案的每个调度变体都是脆弱的(非稳健的),并发现了一个存在稳健最佳方案的剂量空间的替代区域(更低的溶瘤病毒剂量,更高的树突状细胞剂量)。