Suppr超能文献

邻域邻居相关性解释了网络中的测量偏差。

Neighbor-Neighbor Correlations Explain Measurement Bias in Networks.

机构信息

Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292, USA.

Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Sci Rep. 2017 Jul 17;7(1):5576. doi: 10.1038/s41598-017-06042-0.

Abstract

In numerous physical models on networks, dynamics are based on interactions that exclusively involve properties of a node's nearest neighbors. However, a node's local view of its neighbors may systematically bias perceptions of network connectivity or the prevalence of certain traits. We investigate the strong friendship paradox, which occurs when the majority of a node's neighbors have more neighbors than does the node itself. We develop a model to predict the magnitude of the paradox, showing that it is enhanced by negative correlations between degrees of neighboring nodes. We then show that by including neighbor-neighbor correlations, which are degree correlations one step beyond those of neighboring nodes, we accurately predict the impact of the strong friendship paradox in real-world networks. Understanding how the paradox biases local observations can inform better measurements of network structure and our understanding of collective phenomena.

摘要

在众多基于网络的物理模型中,动力学基于仅涉及节点最近邻居属性的相互作用。然而,节点对其邻居的局部观察可能会系统地影响对网络连接性或某些特征的普遍性的感知。我们研究了强友谊悖论,即当节点的大多数邻居拥有的邻居数多于该节点本身时就会出现这种情况。我们开发了一个模型来预测悖论的幅度,表明它受到邻居节点之间的负相关性的增强。然后我们表明,通过包含邻居邻居之间的相关性,即超出邻居节点的度相关性一步,我们可以准确地预测强友谊悖论在现实世界网络中的影响。了解悖论如何使局部观察产生偏差,可以为更好地测量网络结构和我们对集体现象的理解提供信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b9b/5514029/3d25db267387/41598_2017_6042_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验