Vyšniauskas Aurimas, López-Duarte Ismael, Duchemin Nicolas, Vu Thanh-Truc, Wu Yilei, Budynina Ekaterina M, Volkova Yulia A, Peña Cabrera Eduardo, Ramírez-Ornelas Diana E, Kuimova Marina K
Chemistry Department, Imperial College London, Exhibition Road, SW7 2AZ, UK.
Phys Chem Chem Phys. 2017 Sep 27;19(37):25252-25259. doi: 10.1039/c7cp03571c.
Microviscosity is a key parameter controlling the rate of diffusion and reactions on the microscale. One of the most convenient tools for measuring microviscosity is by fluorescent viscosity sensors termed 'molecular rotors'. BODIPY-based molecular rotors in particular proved extremely useful in combination with fluorescence lifetime imaging microscopy, for providing quantitative viscosity maps of living cells as well as measuring dynamic changes in viscosity over time. In this work, we investigate several new BODIPY-based molecular rotors with the aim of improving on the current viscosity sensing capabilities and understanding how the structure of the fluorophore is related to its function. We demonstrate that due to subtle structural changes, BODIPY-based molecular rotors may become sensitive to temperature and polarity of their environment, as well as to viscosity, and provide a photophysical model explaining the nature of this sensitivity. Our data suggests that a thorough understanding of the photophysics of any new molecular rotor, in environments of different viscosity, temperature and polarity, is a must before moving on to applications in viscosity sensing.
微粘度是控制微观尺度上扩散速率和反应速率的关键参数。测量微粘度最便捷的工具之一是使用称为“分子转子”的荧光粘度传感器。特别是基于硼二吡咯(BODIPY)的分子转子,与荧光寿命成像显微镜结合使用时被证明极其有用,可用于提供活细胞的定量粘度图以及测量粘度随时间的动态变化。在这项工作中,我们研究了几种新型的基于BODIPY的分子转子,旨在改进当前的粘度传感能力,并了解荧光团的结构与其功能之间的关系。我们证明,由于细微的结构变化,基于BODIPY的分子转子可能会对其环境的温度、极性以及粘度变得敏感,并提供了一个光物理模型来解释这种敏感性的本质。我们的数据表明,在将任何新型分子转子应用于粘度传感之前,必须全面了解其在不同粘度、温度和极性环境中的光物理性质。