Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117, Heidelberg, Germany.
Sci Rep. 2017 Jul 18;7(1):5694. doi: 10.1038/s41598-017-05891-z.
QED cascades are complex avalanche processes of hard photon emission and electron-positron pair creation driven by ultrastrong electromagnetic fields. They play a fundamental role in astrophysical environments such as a pulsars' magnetosphere, rendering an earth-based implementation with intense lasers attractive. In the literature, QED cascades were also predicted to limit the attainable intensity in a set-up of colliding laser beams in a tenuous gas such as the residual gas of a vacuum chamber, therefore severely hindering experiments at extreme field intensities. Here, we demonstrate that the onset of QED cascades may be either prevented even at intensities around 10 W/cm with tightly focused laser pulses and low-Z gases, or facilitated at intensities below 10 W/cm with enlarged laser focal areas or high-Z gases. These findings pave the way for the control of novel experiments such as the generation of pure electron-positron-photon plasmas from laser energy, and for probing QED in the extreme-intensity regime where the quantum vacuum becomes unstable.
QED 级联是由超强电磁场驱动的硬光子发射和正负电子对产生的复杂雪崩过程。它们在天体物理环境中起着重要作用,如脉冲星的磁层,因此,利用强激光实现基于地球的实验具有吸引力。在文献中,QED 级联也被预测会限制在稀薄气体(如真空室残余气体)中碰撞激光束的设置中可达到的强度,因此严重阻碍了极端场强下的实验。在这里,我们证明,即使在强度约为 10 W/cm 的情况下,通过紧密聚焦的激光脉冲和低 Z 气体,也可以防止 QED 级联的发生,或者通过扩大激光焦点区域或高 Z 气体,在低于 10 W/cm 的强度下促进 QED 级联的发生。这些发现为控制新型实验铺平了道路,例如从激光能量产生纯正负电子光子等离子体,并在量子真空变得不稳定的极端强度范围内探测 QED。