Suppr超能文献

GABA 能性口面区的激活可维持睡眠并拮抗阿莫达非尼和咖啡因的促觉醒作用。

Activation of the GABAergic Parafacial Zone Maintains Sleep and Counteracts the Wake-Promoting Action of the Psychostimulants Armodafinil and Caffeine.

机构信息

Division of Sleep Medicine, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

Neuropsychopharmacology. 2018 Jan;43(2):415-425. doi: 10.1038/npp.2017.152. Epub 2017 Jul 19.

Abstract

We previously reported that acute and selective activation of GABA-releasing parafacial zone (PZ) neurons in behaving mice produces slow-wave-sleep (SWS), even in the absence of sleep deficit, suggesting that these neurons may represent, at least in part, a key cellular substrate underlying sleep drive. It remains, however, to be determined if PZ neurons actively maintain, as oppose to simply gate, SWS. To begin to experimentally address this knowledge gap, we asked whether activation of PZ neurons could attenuate or block the wake-promoting effects of two widely used wake-promoting psychostimulants, armodafinil or caffeine. We found that activation of PZ neurons completely blocked the behavioral and electrocortical wake-promoting action of armodafinil. In some contrast, activation of PZ neurons inhibited the behavioral, but not electrocortical, arousal response to caffeine. These results suggest that: (1) PZ neurons actively maintain, as oppose to simply gate, SWS and cortical slow-wave-activity; (2) armodafinil cannot exert its wake-promoting effects when PZ neurons are activated, intimating a possible shared circuit/molecular basis for mechanism of action; (3) caffeine can continue to exert potent cortical desynchronizing, but not behavioral, effects when PZ neurons are activated, inferring a shared and divergent circuit/molecular basis for mechanism of action; and 4) PZ neurons represent a key cell population for SWS induction and maintenance.

摘要

我们之前曾报道过,在活动的小鼠中急性和选择性地激活 GABA 释放的旁正中区(PZ)神经元会产生慢波睡眠(SWS),即使在没有睡眠不足的情况下也是如此,这表明这些神经元至少在一定程度上代表了睡眠驱动力的关键细胞基础。然而,目前仍有待确定 PZ 神经元是主动维持 SWS,还是仅仅起到门控作用。为了开始实验性地解决这一知识空白,我们询问了激活 PZ 神经元是否可以减弱或阻断两种广泛使用的促觉醒精神兴奋剂阿莫达非尼或咖啡因的促觉醒作用。我们发现,激活 PZ 神经元可完全阻断阿莫达非尼的行为和皮层脑电图促觉醒作用。与此形成鲜明对比的是,激活 PZ 神经元抑制了咖啡因的行为唤醒反应,但不抑制皮层脑电图唤醒反应。这些结果表明:(1)PZ 神经元主动维持 SWS 和皮层慢波活动,而不仅仅是门控;(2)当 PZ 神经元被激活时,阿莫达非尼不能发挥其促觉醒作用,暗示作用机制可能有共同的电路/分子基础;(3)当 PZ 神经元被激活时,咖啡因仍能继续发挥强大的皮层去同步化作用,但不能发挥行为唤醒作用,暗示作用机制有共同和不同的电路/分子基础;(4)PZ 神经元是 SWS 诱导和维持的关键细胞群体。

相似文献

2
The GABAergic parafacial zone is a medullary slow wave sleep-promoting center.
Nat Neurosci. 2014 Sep;17(9):1217-24. doi: 10.1038/nn.3789. Epub 2014 Aug 17.
3
Are there Sleep-promoting Neurons in the Mouse Parafacial Zone?
Neuroscience. 2017 Dec 26;367:98-109. doi: 10.1016/j.neuroscience.2017.10.026. Epub 2017 Oct 27.
4
Identification and characterization of a sleep-active cell group in the rostral medullary brainstem.
J Neurosci. 2012 Dec 12;32(50):17970-6. doi: 10.1523/JNEUROSCI.0620-12.2012.
5
Armodafinil, the R-enantiomer of modafinil: wake-promoting effects and pharmacokinetic profile in the rat.
Pharmacol Biochem Behav. 2006 Nov;85(3):492-9. doi: 10.1016/j.pbb.2006.09.018. Epub 2006 Nov 28.
7
Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control.
Front Neurosci. 2019 Jul 30;13:755. doi: 10.3389/fnins.2019.00755. eCollection 2019.
8
Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons.
J Neurosci. 2018 Feb 7;38(6):1588-1599. doi: 10.1523/JNEUROSCI.1925-17.2017. Epub 2018 Jan 8.
10
Altered sleep latency and arousal regulation in mice lacking norepinephrine.
Pharmacol Biochem Behav. 2004 Aug;78(4):765-73. doi: 10.1016/j.pbb.2004.05.008.

引用本文的文献

1
Preventing acute neurotoxicity of CNS therapeutic oligonucleotides with the addition of Ca and Mg in the formulation.
Mol Ther Nucleic Acids. 2024 Oct 15;35(4):102359. doi: 10.1016/j.omtn.2024.102359. eCollection 2024 Dec 10.
3
Wake, NREM, and REM sleep measures predict incident dementia.
Sleep. 2024 Mar 11;47(3). doi: 10.1093/sleep/zsad329.
4
Validation of DREADD agonists and administration route in a murine model of sleep enhancement.
J Neurosci Methods. 2022 Oct 1;380:109679. doi: 10.1016/j.jneumeth.2022.109679. Epub 2022 Jul 30.
5
Elevated TNF-α Leads to Neural Circuit Instability in the Absence of Interferon Regulatory Factor 8.
J Neurosci. 2022 Aug 10;42(32):6171-6185. doi: 10.1523/JNEUROSCI.0601-22.2022. Epub 2022 Jul 5.
6
Neural and Homeostatic Regulation of REM Sleep.
Front Psychol. 2020 Jul 21;11:1662. doi: 10.3389/fpsyg.2020.01662. eCollection 2020.
7
The neuroanatomy and neurochemistry of sleep-wake control.
Curr Opin Physiol. 2020 Jun;15:143-151. doi: 10.1016/j.cophys.2019.12.012. Epub 2019 Dec 31.
8
Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control.
Front Neurosci. 2019 Jul 30;13:755. doi: 10.3389/fnins.2019.00755. eCollection 2019.
10
Multimodal assessment of recovery from coma in a rat model of diffuse brainstem tegmentum injury.
Neuroimage. 2019 Apr 1;189:615-630. doi: 10.1016/j.neuroimage.2019.01.060. Epub 2019 Jan 29.

本文引用的文献

2
An Adenosine-Mediated Glial-Neuronal Circuit for Homeostatic Sleep.
J Neurosci. 2016 Mar 30;36(13):3709-21. doi: 10.1523/JNEUROSCI.3906-15.2016.
3
Caffeine promotes wakefulness via dopamine signaling in Drosophila.
Sci Rep. 2016 Feb 12;6:20938. doi: 10.1038/srep20938.
4
Basal forebrain control of wakefulness and cortical rhythms.
Nat Commun. 2015 Nov 3;6:8744. doi: 10.1038/ncomms9744.
5
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.
Transl Psychiatry. 2015 Apr 14;5(4):e549. doi: 10.1038/tp.2015.46.
6
Wake-promoting pharmacotherapy for psychiatric disorders.
Curr Psychiatry Rep. 2014 Dec;16(12):524. doi: 10.1007/s11920-014-0524-2.
7
The GABAergic parafacial zone is a medullary slow wave sleep-promoting center.
Nat Neurosci. 2014 Sep;17(9):1217-24. doi: 10.1038/nn.3789. Epub 2014 Aug 17.
8
Dopamine transporters govern diurnal variation in extracellular dopamine tone.
Proc Natl Acad Sci U S A. 2014 Jul 1;111(26):E2751-9. doi: 10.1073/pnas.1407935111. Epub 2014 Jun 16.
9
Armodafinil-induced wakefulness in animals with ventrolateral preoptic lesions.
Nat Sci Sleep. 2014 May 2;6:57-63. doi: 10.2147/NSS.S53132. eCollection 2014.
10
Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions.
Front Neurol. 2013 Oct 7;4:139. doi: 10.3389/fneur.2013.00139.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验