Suppr超能文献

与DENR-MCT-1结合的人核糖体晶体结构

Crystal Structure of the Human Ribosome in Complex with DENR-MCT-1.

作者信息

Lomakin Ivan B, Stolboushkina Elena A, Vaidya Anand T, Zhao Chenguang, Garber Maria B, Dmitriev Sergey E, Steitz Thomas A

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia; Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.

出版信息

Cell Rep. 2017 Jul 18;20(3):521-528. doi: 10.1016/j.celrep.2017.06.025.

Abstract

The repertoire of the density-regulated protein (DENR) and the malignant T cell-amplified sequence 1 (MCT-1/MCTS1) oncoprotein was recently expanded to include translational control of a specific set of cancer-related mRNAs. DENR and MCT-1 form the heterodimer, which binds to the ribosome and operates at both translation initiation and reinitiation steps, though by a mechanism that is yet unclear. Here, we determined the crystal structure of the human small ribosomal subunit in complex with DENR-MCT-1. The structure reveals the location of the DENR-MCT-1 dimer bound to the small ribosomal subunit. The binding site of the C-terminal domain of DENR on the ribosome has a striking similarity with those of canonical initiation factor 1 (eIF1), which controls the fidelity of translation initiation and scanning. Our findings elucidate how the DENR-MCT-1 dimer interacts with the ribosome and have functional implications for the mechanism of unconventional translation initiation and reinitiation.

摘要

密度调节蛋白(DENR)和恶性T细胞扩增序列1(MCT-1/MCTS1)癌蛋白的作用谱最近有所扩展,包括对一组特定癌症相关mRNA的翻译控制。DENR和MCT-1形成异二聚体,该异二聚体与核糖体结合,并在翻译起始和重新起始步骤中发挥作用,但其机制尚不清楚。在这里,我们确定了与DENR-MCT-1复合物结合的人小核糖体亚基的晶体结构。该结构揭示了DENR-MCT-1二聚体与小核糖体亚基结合的位置。DENR C末端结构域在核糖体上的结合位点与典型起始因子1(eIF1)的结合位点具有显著相似性,eIF1控制翻译起始和扫描的保真度。我们的研究结果阐明了DENR-MCT-1二聚体如何与核糖体相互作用,并对非常规翻译起始和重新起始机制具有功能意义。

相似文献

1
Crystal Structure of the Human Ribosome in Complex with DENR-MCT-1.
Cell Rep. 2017 Jul 18;20(3):521-528. doi: 10.1016/j.celrep.2017.06.025.
2
Crystal structure of the DENR-MCT-1 complex revealed zinc-binding site essential for heterodimer formation.
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):528-533. doi: 10.1073/pnas.1809688116. Epub 2018 Dec 24.
3
DENR-MCTS1 heterodimerization and tRNA recruitment are required for translation reinitiation.
PLoS Biol. 2018 Jun 11;16(6):e2005160. doi: 10.1371/journal.pbio.2005160. eCollection 2018 Jun.
4
Crystal structure of the C-terminal domain of DENR.
Comput Struct Biotechnol J. 2020 Mar 19;18:696-704. doi: 10.1016/j.csbj.2020.03.009. eCollection 2020.
5
Structural and Functional Insights into Human Re-initiation Complexes.
Mol Cell. 2017 Aug 3;67(3):447-456.e7. doi: 10.1016/j.molcel.2017.06.032. Epub 2017 Jul 18.
8
10
Tma64/eIF2D, Tma20/MCT-1, and Tma22/DENR Recycle Post-termination 40S Subunits In Vivo.
Mol Cell. 2018 Sep 6;71(5):761-774.e5. doi: 10.1016/j.molcel.2018.07.028. Epub 2018 Aug 23.

引用本文的文献

1
MCTS2 and distinct eIF2D roles in uORF-dependent translation regulation revealed by in vitro re-initiation assays.
EMBO J. 2025 Feb;44(3):854-876. doi: 10.1038/s44318-024-00347-3. Epub 2025 Jan 2.
4
Ribosome rescue factor PELOTA modulates translation start site choice for C/EBPα protein isoforms.
Life Sci Alliance. 2024 May 21;7(7). doi: 10.26508/lsa.202302501. Print 2024 Jul.
7
Boric acid intercepts 80S ribosome migration from AUG-stop by stabilizing eRF1.
Nat Chem Biol. 2024 May;20(5):605-614. doi: 10.1038/s41589-023-01513-0. Epub 2024 Jan 24.
9
Molecular basis for recognition and deubiquitination of 40S ribosomes by Otu2.
Nat Commun. 2023 May 12;14(1):2730. doi: 10.1038/s41467-023-38161-w.
10
Principles, mechanisms, and biological implications of translation termination-reinitiation.
RNA. 2023 Jul;29(7):865-884. doi: 10.1261/rna.079375.122. Epub 2023 Apr 6.

本文引用的文献

1
Structural Insights into the Mechanism of Scanning and Start Codon Recognition in Eukaryotic Translation Initiation.
Trends Biochem Sci. 2017 Aug;42(8):589-611. doi: 10.1016/j.tibs.2017.03.004. Epub 2017 Apr 22.
3
Insights into the mechanisms of eukaryotic translation gained with ribosome profiling.
Nucleic Acids Res. 2017 Jan 25;45(2):513-526. doi: 10.1093/nar/gkw1190. Epub 2016 Dec 6.
4
Dynamics of ribosome scanning and recycling revealed by translation complex profiling.
Nature. 2016 Jul 28;535(7613):570-4. doi: 10.1038/nature18647. Epub 2016 Jul 20.
5
eIF3 Peripheral Subunits Rearrangement after mRNA Binding and Start-Codon Recognition.
Mol Cell. 2016 Jul 21;63(2):206-217. doi: 10.1016/j.molcel.2016.05.033. Epub 2016 Jun 30.
6
Translational control by 5'-untranslated regions of eukaryotic mRNAs.
Science. 2016 Jun 17;352(6292):1413-6. doi: 10.1126/science.aad9868.
8
Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex.
Mol Cell. 2015 Aug 6;59(3):399-412. doi: 10.1016/j.molcel.2015.06.033. Epub 2015 Jul 23.
10
Structure of the human 80S ribosome.
Nature. 2015 Apr 30;520(7549):640-5. doi: 10.1038/nature14427. Epub 2015 Apr 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验