Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", via Bovio 6, Novara, Italy; Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, CAAD, Novara, Italy.
Humanitas Clinical and Research Center, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Rheumatology, University Hospitals of Morecambe Bay NHS Foundation Trust, Royal Lancaster Infirmary, Ashton Road, LA1 4RP Lancaster, United Kingdom.
J Autoimmun. 2017 Dec;85:117-125. doi: 10.1016/j.jaut.2017.07.010. Epub 2017 Jul 17.
A bottleneck for immunotherapy of cancer is the immunosuppressive microenvironment in which the tumor cells proliferate. Cancers harness the immune regulatory mechanism that prevents autoimmunity from evading immunosurveillance and promoting immune destruction. Regulatory T cells, myeloid suppressor cells, inhibitory cytokines and immune checkpoint receptors are the major components of the immune system acting in concert with cancer cells and causing the subversion of anti-tumor immunity. This redundant immunosuppressive network poses an impediment to efficacious immunotherapy by facilitating tumor progression. Tumor-associated myeloid cells comprise heterogeneous populations acting systemically (myeloid-derived suppressor cells/MDSCs) and/or locally in the tumor microenvironment (MDSCs and tumor-associated macrophages/TAMs). Both populations promote cancer cell proliferation and survival, angiogenesis and lymphangiogenesis and elicit immunosuppression through different pathways, including the expression of immunosuppressive cytokines and checkpoint inhibitors. Several evidences have demonstrated that myeloid cells can express different functional programs in response to different microenvironmental signals, a property defined as functional plasticity. The opposed extremes of this functional flexibility are generally represented by the classical macrophage activation, which identifies inflammatory and cytotoxic M1 polarized macrophages, and the alternative state of macrophage activation, which identifies M2 polarized anti-inflammatory and immunosuppressive macrophages. Functional skewing of myeloid cells occurs in vivo under physiological and pathological conditions, including cancer and autoimmunity. Here we discuss how myeloid suppressor cells can on one hand support tumor growth and, on the other, limit autoimmune responses, indicating that their therapeutic reprogramming can generate opportunities in relieving immunosuppression in the tumor microenvironment or reinstating tolerance in autoimmune conditions.
癌症免疫治疗的一个瓶颈是肿瘤细胞增殖的免疫抑制微环境。癌症利用免疫调节机制来逃避免疫监视并促进免疫破坏,从而防止自身免疫。调节性 T 细胞、髓系抑制细胞、抑制性细胞因子和免疫检查点受体是协同作用于癌细胞并导致抗肿瘤免疫被颠覆的免疫系统的主要组成部分。这个冗余的免疫抑制网络通过促进肿瘤进展,对有效的免疫治疗构成了障碍。肿瘤相关的髓系细胞包括异质群体,这些群体在全身(髓系来源的抑制细胞/MDSCs)和/或肿瘤微环境中局部发挥作用(MDSCs 和肿瘤相关巨噬细胞/TAMs)。这两种群体都通过不同的途径促进癌细胞的增殖和存活、血管生成和淋巴管生成,并通过表达免疫抑制性细胞因子和检查点抑制剂来引发免疫抑制。有几项证据表明,髓系细胞可以根据不同的微环境信号表达不同的功能程序,这种特性被定义为功能可塑性。这种功能灵活性的对立极端通常由经典的巨噬细胞激活来表示,它识别炎症和细胞毒性 M1 极化巨噬细胞,而巨噬细胞激活的替代状态则识别 M2 极化的抗炎和免疫抑制巨噬细胞。在生理和病理条件下,包括癌症和自身免疫,髓系抑制细胞在体内发生功能倾斜。在这里,我们讨论了髓系抑制细胞一方面如何支持肿瘤生长,另一方面又如何限制自身免疫反应,这表明对其进行治疗性重编程可以为缓解肿瘤微环境中的免疫抑制或恢复自身免疫条件下的耐受性提供机会。
J Autoimmun. 2017-7-17
Cancer Immunol Immunother. 2016-7
Clin Immunol. 2016-10-21
Hum Immunol. 2017-2
Front Immunol. 2018-3-2
Cell Mol Immunol. 2020-1
Front Immunol. 2019-5-3
MedComm (2020). 2025-7-11
Anticancer Agents Med Chem. 2025
Front Immunol. 2024