Maneshi M M, Gottlieb P A, Hua S Z
State University of New York at Buffalo, Buffalo, NY, United States.
Curr Top Membr. 2017;79:309-334. doi: 10.1016/bs.ctm.2016.11.005. Epub 2017 Jan 18.
Microfluidics is an interdisciplinary field intersecting many areas in engineering. Utilizing a combination of physics, chemistry, biology, and biotechnology, along with practical applications for designing devices that use low volumes of fluids to achieve high-throughput screening, is a major goal in microfluidics. Microfluidic approaches allow the study of cells growth and differentiation using a variety of conditions including control of fluid flow that generates shear stress. Recently, Piezo1 channels were shown to respond to fluid shear stress and are crucial for vascular development. This channel is ideal for studying fluid shear stress applied to cells using microfluidic devices. We have developed an approach that allows us to analyze the role of Piezo channels on any given cell and serves as a high-throughput screen for drug discovery. We show that this approach can provide detailed information about the inhibitors of Piezo channels.
微流体技术是一个交叉学科领域,与工程学的许多领域相交。利用物理、化学、生物学和生物技术的结合,以及设计使用少量流体来实现高通量筛选的设备的实际应用,是微流体技术的一个主要目标。微流体方法允许在包括产生剪切应力的流体流动控制在内的各种条件下研究细胞生长和分化。最近,Piezo1通道被证明对流体剪切应力有反应,并且对血管发育至关重要。该通道非常适合使用微流体设备研究施加于细胞的流体剪切应力。我们已经开发出一种方法,使我们能够分析Piezo通道在任何给定细胞上的作用,并作为药物发现的高通量筛选方法。我们表明,这种方法可以提供有关Piezo通道抑制剂的详细信息。