Suppr超能文献

小G蛋白RAS2参与昼夜节律模型中生物钟的代谢补偿。

The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model .

作者信息

Gyöngyösi Norbert, Szőke Anita, Ella Krisztina, Káldi Krisztina

机构信息

From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.

From the Department of Physiology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary

出版信息

J Biol Chem. 2017 Sep 8;292(36):14929-14939. doi: 10.1074/jbc.M117.804922. Epub 2017 Jul 20.

Abstract

Accumulating evidence from both experimental and clinical investigations indicates a tight interaction between metabolism and circadian timekeeping; however, knowledge of the underlying mechanism is still incomplete. Metabolic compensation allows circadian oscillators to run with a constant speed at different substrate levels and, therefore, is a substantial criterion of a robust rhythm in a changing environment. Because previous data have suggested a central role of RAS2-mediated signaling in the adaptation of yeast to different nutritional environments, we examined the involvement of RAS2 in the metabolic regulation of the clock in the circadian model organism We show that, in a -deficient strain, the period is longer than in the control. Moreover, unlike in the WT, in Δ, operation of the circadian clock was affected by glucose; compared with starvation conditions, the period was longer and the oscillation of expression of the () gene was dampened. In constant darkness, the delayed phosphorylation of the FRQ protein and the long-lasting accumulation of FRQ in the nucleus were in accordance with the longer period and the less robust rhythm in the mutant. Although glucose did not affect the subcellular distribution of FRQ in the WT, highly elevated FRQ levels were detected in the nucleus in Δ RAS2 interacted with the RAS-binding domain of the adenylate cyclase , and the cAMP analogue 8-bromo-cyclic AMP partially rescued the circadian phenotype We therefore propose that RAS2 acts via a cAMP-dependent pathway and exerts significant metabolic control on the circadian clock.

摘要

来自实验和临床研究的越来越多的证据表明,新陈代谢与昼夜节律计时之间存在紧密的相互作用;然而,其潜在机制的知识仍不完整。代谢补偿使昼夜节律振荡器能够在不同底物水平下以恒定速度运行,因此,是不断变化的环境中稳健节律的一个重要标准。由于先前的数据表明RAS2介导的信号传导在酵母适应不同营养环境中起核心作用,我们研究了RAS2在昼夜节律模式生物时钟的代谢调节中的作用。我们表明,在RAS2缺陷型菌株中,周期比对照组长。此外,与野生型不同,在RAS2缺陷型中,昼夜节律时钟的运行受葡萄糖影响;与饥饿条件相比,周期更长,并且生物钟基因(生物钟相关基因)表达的振荡受到抑制。在持续黑暗中,FRQ蛋白的延迟磷酸化以及FRQ在细胞核中的长期积累与突变体中较长的周期和较弱的节律一致。尽管葡萄糖不影响野生型中FRQ的亚细胞分布,但在RAS2缺陷型中,细胞核中检测到高度升高的FRQ水平。RAS2与腺苷酸环化酶的RAS结合结构域相互作用,并且cAMP类似物8-溴环磷酸腺苷部分挽救了昼夜节律表型。因此,我们提出RAS2通过cAMP依赖性途径起作用,并对生物钟施加显著的代谢控制。

相似文献

1
The small G protein RAS2 is involved in the metabolic compensation of the circadian clock in the circadian model .
J Biol Chem. 2017 Sep 8;292(36):14929-14939. doi: 10.1074/jbc.M117.804922. Epub 2017 Jul 20.
2
FRQ-CK1 Interaction Underlies Temperature Compensation of the Circadian Clock.
mBio. 2021 Jun 29;12(3):e0142521. doi: 10.1128/mBio.01425-21.
3
Modulation of Circadian Gene Expression and Metabolic Compensation by the RCO-1 Corepressor of Neurospora crassa.
Genetics. 2016 Sep;204(1):163-76. doi: 10.1534/genetics.116.191064. Epub 2016 Jul 22.
4
Analysis of Circadian Rhythms in the Basal Filamentous Ascomycete Pyronema confluens.
G3 (Bethesda). 2015 Aug 7;5(10):2061-71. doi: 10.1534/g3.115.020461.
6
Entrainment elicits period aftereffects in Neurospora crassa.
Chronobiol Int. 2010 Aug;27(7):1335-47. doi: 10.3109/07420528.2010.504316.
7
PRD-1, a Component of the Circadian System of Neurospora crassa, Is a Member of the DEAD-box RNA Helicase Family.
J Biol Rhythms. 2016 Jun;31(3):258-71. doi: 10.1177/0748730416639717. Epub 2016 Mar 29.
8
Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in .
mBio. 2021 Jun 29;12(3):e0149321. doi: 10.1128/mBio.01493-21.
10
Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora.
J Biol Rhythms. 2010 Apr;25(2):71-80. doi: 10.1177/0748730409360889.

引用本文的文献

1
Exploring the anti-aging potential of natural products and plant extracts in budding yeast : A review.
F1000Res. 2024 Dec 17;12:1265. doi: 10.12688/f1000research.141669.2. eCollection 2023.
2
A Compensated Clock: Temperature and Nutritional Compensation Mechanisms Across Circadian Systems.
Bioessays. 2025 Mar;47(3):e202400211. doi: 10.1002/bies.202400211. Epub 2024 Dec 18.
3
Circadian regulation of metabolism across photosynthetic organisms.
Plant J. 2023 Nov;116(3):650-668. doi: 10.1111/tpj.16405. Epub 2023 Aug 2.
5
Nutritional compensation of the circadian clock is a conserved process influenced by gene expression regulation and mRNA stability.
PLoS Biol. 2023 Jan 5;21(1):e3001961. doi: 10.1371/journal.pbio.3001961. eCollection 2023 Jan.
6
Evaluating the circadian rhythm and response to glucose addition in dispersed growth cultures of Neurospora crassa.
Fungal Biol. 2020 May;124(5):398-406. doi: 10.1016/j.funbio.2019.11.004. Epub 2019 Nov 20.
7
Circadian rhythms, metabolic oscillators, and the target of rapamycin (TOR) pathway: the Neurospora connection.
Curr Genet. 2019 Apr;65(2):339-349. doi: 10.1007/s00294-018-0897-6. Epub 2018 Oct 26.

本文引用的文献

1
Transcriptional repression of frequency by the IEC-1-INO80 complex is required for normal Neurospora circadian clock function.
PLoS Genet. 2017 Apr 12;13(4):e1006732. doi: 10.1371/journal.pgen.1006732. eCollection 2017 Apr.
2
PRD-1, a Component of the Circadian System of Neurospora crassa, Is a Member of the DEAD-box RNA Helicase Family.
J Biol Rhythms. 2016 Jun;31(3):258-71. doi: 10.1177/0748730416639717. Epub 2016 Mar 29.
3
period-1 encodes an ATP-dependent RNA helicase that influences nutritional compensation of the Neurospora circadian clock.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15707-12. doi: 10.1073/pnas.1521918112. Epub 2015 Dec 8.
4
The circadian system as an organizer of metabolism.
Fungal Genet Biol. 2016 May;90:39-43. doi: 10.1016/j.fgb.2015.10.002. Epub 2015 Oct 20.
6
Ras Activity Oscillates in the Mouse Suprachiasmatic Nucleus and Modulates Circadian Clock Dynamics.
Mol Neurobiol. 2016 Apr;53(3):1843-1855. doi: 10.1007/s12035-015-9135-0. Epub 2015 Mar 12.
7
Circadian rhythms. Decoupling circadian clock protein turnover from circadian period determination.
Science. 2015 Jan 30;347(6221):1257277. doi: 10.1126/science.1257277.
8
Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5.
PLoS Genet. 2014 Nov 20;10(11):e1004762. doi: 10.1371/journal.pgen.1004762. eCollection 2014 Nov.
9
Ras-mediated deregulation of the circadian clock in cancer.
PLoS Genet. 2014 May 29;10(5):e1004338. doi: 10.1371/journal.pgen.1004338. eCollection 2014.
10
The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.
PLoS Genet. 2014 Mar 6;10(3):e1004183. doi: 10.1371/journal.pgen.1004183. eCollection 2014 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验