Nowak Roberta B, Papoin Julien, Gokhin David S, Casu Carla, Rivella Stefano, Lipton Jeffrey M, Blanc Lionel, Fowler Velia M
Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA.
Center for Autoimmune and Musculoskeletal Disorders, Feinstein Institute for Medical Research, Manhasset, NY.
Blood. 2017 Aug 31;130(9):1144-1155. doi: 10.1182/blood-2017-05-787051. Epub 2017 Jul 20.
Biogenesis of mammalian red blood cells requires nuclear expulsion by orthochromatic erythoblasts late in terminal differentiation (enucleation), but the mechanism is largely unexplained. Here, we employed high-resolution confocal microscopy to analyze nuclear morphology and F-actin rearrangements during the initiation, progression, and completion of mouse and human erythroblast enucleation in vivo. Mouse erythroblast nuclei acquire a dumbbell-shaped morphology during enucleation, whereas human bone marrow erythroblast nuclei unexpectedly retain their spherical morphology. These morphological differences are linked to differential expression of Lamin isoforms, with primary mouse erythroblasts expressing only Lamin B and primary human erythroblasts only Lamin A/C. We did not consistently identify a continuous F-actin ring at the cell surface constriction in mouse erythroblasts, nor at the membrane protein-sorting boundary in human erythroblasts, which do not have a constriction, arguing against a contractile ring-based nuclear expulsion mechanism. However, both mouse and human erythroblasts contain an F-actin structure at the rear of the translocating nucleus, enriched in tropomodulin 1 (Tmod1) and nonmuscle myosin IIB. We investigated Tmod1 function in mouse and human erythroblasts both in vivo and in vitro and found that absence of Tmod1 leads to enucleation defects in mouse fetal liver erythroblasts, and in CD34 hematopoietic stem and progenitor cells, with increased F-actin in the structure at the rear of the nucleus. This novel structure, the "enucleosome," may mediate common cytoskeletal mechanisms underlying erythroblast enucleation, notwithstanding the morphological heterogeneity of enucleation across species.
哺乳动物红细胞的生物发生需要正染性成红细胞在终末分化后期排出细胞核(去核),但其机制在很大程度上仍未得到解释。在这里,我们采用高分辨率共聚焦显微镜来分析小鼠和人类成红细胞在体内去核起始、进行和完成过程中的核形态和F-肌动蛋白重排。小鼠成红细胞的核在去核过程中呈现哑铃状形态,而人类骨髓成红细胞的核出人意料地保持球形形态。这些形态差异与核纤层蛋白亚型的差异表达有关,原代小鼠成红细胞仅表达核纤层蛋白B,原代人类成红细胞仅表达核纤层蛋白A/C。我们在小鼠成红细胞的细胞表面缢缩处或人类成红细胞的膜蛋白分选边界(此处没有缢缩)均未持续鉴定到连续的F-肌动蛋白环,这表明基于收缩环的细胞核排出机制不成立。然而,小鼠和人类成红细胞在迁移的细胞核后部均含有一种F-肌动蛋白结构,该结构富含原肌球蛋白1(Tmod1)和非肌肉肌球蛋白IIB。我们在体内和体外研究了Tmod1在小鼠和人类成红细胞中的功能,发现缺失Tmod1会导致小鼠胎儿肝脏成红细胞以及CD34造血干细胞和祖细胞出现去核缺陷,细胞核后部结构中的F-肌动蛋白增加。这种新结构“去核小体”可能介导了成红细胞去核过程中共同的细胞骨架机制,尽管不同物种的去核形态存在异质性。