Suppr超能文献

通过叶脉将生长素与光合速率联系起来。

Linking Auxin with Photosynthetic Rate via Leaf Venation.

作者信息

McAdam Scott A M, Eléouët Morgane P, Best Melanie, Brodribb Timothy J, Murphy Madeline Carins, Cook Sam D, Dalmais Marion, Dimitriou Theodore, Gélinas-Marion Ariane, Gill Warwick M, Hegarty Matthew, Hofer Julie M I, Maconochie Mary, McAdam Erin L, McGuiness Peter, Nichols David S, Ross John J, Sussmilch Frances C, Urquhart Shelley

机构信息

School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia.

Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3EE, United Kingdom.

出版信息

Plant Physiol. 2017 Sep;175(1):351-360. doi: 10.1104/pp.17.00535. Epub 2017 Jul 21.

Abstract

Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the () locus in pea (), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find to be a member of the family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.

摘要

在光合气体交换过程中,陆生植物会向大气中散失大量水分。在被子植物中,一个复杂的叶脉网络为叶片提供水分,人们普遍认为这些叶脉的密度和分布决定了叶片的最大水力容量,进而决定了最大光合速率。该理论主要基于种间比较,从未通过叶脉突变体来检验叶片叶脉形态对植物水分关系的具体影响。在这里,我们对豌豆(Pisum sativum)中()位点的突变体进行了表征,这些突变体在发育中的叶片中生长素稳态和活性发生了改变,同时叶片叶脉密度降低,自由末梢小叶的分布异常。突变体植株中这种改变的叶脉表型导致叶片水力导度和叶片气体交换显著降低。我们发现是生长素生物合成基因家族的一员。我们的结果通过叶脉将生长素生物合成与最大光合速率联系起来,并证实了这样一种理论,即叶片叶脉密度的增加及其有效分布可以推动叶片光合能力的提高。

相似文献

1
Linking Auxin with Photosynthetic Rate via Leaf Venation.
Plant Physiol. 2017 Sep;175(1):351-360. doi: 10.1104/pp.17.00535. Epub 2017 Jul 21.
2
Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.
New Phytol. 2016 Jan;209(1):216-27. doi: 10.1111/nph.13577. Epub 2015 Jul 30.
4
How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.
J Exp Bot. 2013 Oct;64(13):4053-80. doi: 10.1093/jxb/ert316.
6
Phenotypic characterization of the CRISPA (ARP gene) mutant of pea (Pisum sativum; Fabaceae): a reevaluation.
Am J Bot. 2014 Mar;101(3):408-27. doi: 10.3732/ajb.1300415. Epub 2014 Mar 17.
9
Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.
Plant Cell Environ. 2014 Jan;37(1):124-31. doi: 10.1111/pce.12136. Epub 2013 Jun 10.
10
Unifoliata-Afila interactions in pea leaf morphogenesis.
Am J Bot. 2013 Mar;100(3):478-95. doi: 10.3732/ajb.1200611. Epub 2013 Feb 10.

引用本文的文献

3
Innovations in functional genomics and molecular breeding of pea: exploring advances and opportunities.
aBIOTECH. 2024 Jan 30;5(1):71-93. doi: 10.1007/s42994-023-00129-1. eCollection 2024 Mar.
4
Plant Development in the Garden Pea as Revealed by Mutations in the Gene.
Genes (Basel). 2023 Nov 23;14(12):2115. doi: 10.3390/genes14122115.
6
Recent advances in auxin biosynthesis and homeostasis.
3 Biotech. 2023 Sep;13(9):290. doi: 10.1007/s13205-023-03709-6. Epub 2023 Aug 4.
7
Different Leaf Anatomical Responses to Water Deficit in Maize and Soybean.
Life (Basel). 2023 Jan 20;13(2):290. doi: 10.3390/life13020290.
10
Effect of Plant Growth Regulators on Osmotic Regulatory Substances and Antioxidant Enzyme Activity of .
Plants (Basel). 2022 Sep 28;11(19):2559. doi: 10.3390/plants11192559.

本文引用的文献

1
Pattern formation in the vascular system of monocot and dicot plant species.
New Phytol. 2004 Nov;164(2):209-242. doi: 10.1111/j.1469-8137.2004.01191.x.
2
Exploiting a fast neutron mutant genetic resource in Pisum sativum (pea) for functional genomics.
Funct Plant Biol. 2013 Dec;40(12):1261-1270. doi: 10.1071/FP13147.
4
Hydraulic basis for the evolution of photosynthetic productivity.
Nat Plants. 2016 May 27;2(6):16072. doi: 10.1038/nplants.2016.72.
5
Auxin Biosynthesis: Are the Indole-3-Acetic Acid and Phenylacetic Acid Biosynthesis Pathways Mirror Images?
Plant Physiol. 2016 Jun;171(2):1230-41. doi: 10.1104/pp.16.00454. Epub 2016 Apr 26.
7
Control of vein network topology by auxin transport.
BMC Biol. 2015 Nov 11;13:94. doi: 10.1186/s12915-015-0208-3.
8
Shoot-derived abscisic acid promotes root growth.
Plant Cell Environ. 2016 Mar;39(3):652-9. doi: 10.1111/pce.12669. Epub 2016 Jan 8.
10
Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.
New Phytol. 2016 Jan;209(1):216-27. doi: 10.1111/nph.13577. Epub 2015 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验