sFIM, NIMH, NIH, Bethesda, MD, USA.
Maastricht Brain Imaging Centre, Dept. of Cognitive Neuroscience, Faculty of Psychology and NeuroScience, Maastricht University, Maastricht, The Netherlands.
Neuroimage. 2019 Aug 15;197:742-760. doi: 10.1016/j.neuroimage.2017.07.041. Epub 2017 Jul 20.
Functional magnetic resonance imaging (fMRI) using the blood oxygenation level-dependent (BOLD) contrast indirectly probes neuronal activity changes via evoked cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMR) changes. The gradient-echo BOLD signal is mostly sensitive to ascending veins in the tissue and to pial veins. Thereby, the achievable spatial specificity to neuronal activation is limited. Furthermore, the non-linear interaction of CBF, CBV and CMR can hamper quantitative interpretations of the BOLD signal across cortical depths with different baseline physiology. Measuring CBF, CBV or CMR directly on a depth-dependent level has the potential to overcome these limitations. Here, we review these candidates of physiologically well-defined contrasts with the particular focus on arterial spin labeling (ASL), vascular space occupancy (VASO) and calibrated fMRI. These methods are reviewed with respect to their fMRI sequence parameter space and the applicability for neuroscientific studies in humans. We show representative results of depth-dependent 'non-BOLD-fMRI' in humans and their spatiotemporal characteristics. We conclude that non-BOLD methods are promising alternatives compared to conventional fMRI as they can provide improved spatial specificity, quantifiability and, hence, physiological interpretability as a function of cortical depth. At submillimeter resolution with inherently low signal-to-noise ratio (SNR), however, their use is still challenging. Nevertheless, we believe that 'non-BOLD-fMRI' is a useful alternative for depth-dependent investigations, by providing valuable insights into neurovascular coupling models that facilitate the interpretability of fMRI for neuroscientific applications.
功能磁共振成像(fMRI)利用血氧水平依赖(BOLD)对比通过诱发脑血流(CBF)、脑血容量(CBV)和脑氧代谢率(CMR)的变化间接探测神经元活动的变化。梯度回波 BOLD 信号主要对组织中的上行静脉和脑膜静脉敏感。因此,实现对神经元激活的空间特异性是有限的。此外,CBF、CBV 和 CMR 的非线性相互作用可能会阻碍对不同基线生理状态下皮层深度的 BOLD 信号的定量解释。直接在深度相关的水平上测量 CBF、CBV 或 CMR 有潜力克服这些限制。在这里,我们回顾了这些具有特定生理定义对比度的候选方法,特别关注动脉自旋标记(ASL)、血管空间占有率(VASO)和校准 fMRI。这些方法在 fMRI 序列参数空间及其在人类神经科学研究中的适用性方面进行了综述。我们展示了人类深度依赖型“非 BOLD-fMRI”的代表性结果及其时空特征。我们得出的结论是,与传统 fMRI 相比,非 BOLD 方法是很有前途的替代方法,因为它们可以提供更高的空间特异性、可量化性,因此作为皮层深度的函数具有更好的生理学解释性。然而,在亚毫米分辨率下,固有信噪比(SNR)较低,其应用仍然具有挑战性。尽管如此,我们相信“非 BOLD-fMRI”是一种有用的替代方法,可深度依赖研究提供有价值的神经血管耦合模型的见解,从而促进 fMRI 在神经科学应用中的可解释性。