Suppr超能文献

刘易斯大鼠体内的固有氧化应激与对弓形虫病的抗性有关。

Inherent Oxidative Stress in the Lewis Rat Is Associated with Resistance to Toxoplasmosis.

作者信息

Witola William H, Kim Chi Yong, Zhang Xuejin

机构信息

Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.

出版信息

Infect Immun. 2017 Sep 20;85(10). doi: 10.1128/IAI.00289-17. Print 2017 Oct.

Abstract

The course of infection in rats closely resembles that in humans. However, compared to the Brown Norway (BN) rat, the Lewis (LEW) rat is extremely resistant to infection. Thus, we performed RNA sequencing analysis of the LEW rat versus the BN rat, with or without infection, in order to unravel molecular factors directing robust and rapid early -killing mechanisms in the LEW rat. We found that compared to the uninfected BN rat, the uninfected LEW rat has inherently higher transcript levels of cytochrome enzymes (Cyp2d3, Cyp2d5, and Cybrd1, which catalyze generation of reactive oxygen species [ROS]), with concomitant higher levels of ROS. Interestingly, despite having higher levels of ROS, the LEW rat had lower transcript levels for antioxidant enzymes (lactoperoxidase, microsomal glutathione -transferase 2 and 3, glutathione -transferase peroxidase kappa 1, and glutathione peroxidase) than the BN rat, suggesting that the LEW rat maintains cellular oxidative stress that it tolerates. Corroboratively, we found that scavenging of superoxide anion by Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) decreased the refractoriness of LEW rat peritoneal cells to infection, resulting in proliferation of parasites in LEW rat peritoneal cells which, in turn, led to augmented cell death in the infected cells. Together, our results indicate that the LEW rat maintains inherent cellular oxidative stress that contributes to resistance to invading , and they thus unveil new avenues for developing therapeutic agents targeting induction of host cell oxidative stress as a mechanism for killing .

摘要

大鼠的感染过程与人类的极为相似。然而,与棕色挪威(BN)大鼠相比,刘易斯(LEW)大鼠对感染具有极强的抵抗力。因此,我们对感染或未感染的LEW大鼠与BN大鼠进行了RNA测序分析,以揭示在LEW大鼠中指导强大而快速的早期杀伤机制的分子因素。我们发现,与未感染的BN大鼠相比,未感染的LEW大鼠固有地具有更高水平的细胞色素酶(Cyp2d3、Cyp2d5和Cybrd1,它们催化活性氧[ROS]的生成)转录本,同时ROS水平也更高。有趣的是,尽管LEW大鼠的ROS水平较高,但其抗氧化酶(乳过氧化物酶、微粒体谷胱甘肽转移酶2和3、谷胱甘肽转移酶过氧化物酶κ1和谷胱甘肽过氧化物酶)的转录本水平却低于BN大鼠,这表明LEW大鼠维持着其能够耐受的细胞氧化应激。相应地,我们发现用锰(III)四(4-苯甲酸)卟啉(MnTBAP)清除超氧阴离子可降低LEW大鼠腹膜细胞对感染的抵抗力,导致LEW大鼠腹膜细胞中的寄生虫增殖,进而导致感染细胞中的细胞死亡增加。总之,我们的结果表明,LEW大鼠维持着有助于抵抗入侵的固有细胞氧化应激,因此揭示了开发以诱导宿主细胞氧化应激作为杀伤机制的治疗药物的新途径。

相似文献

1
Inherent Oxidative Stress in the Lewis Rat Is Associated with Resistance to Toxoplasmosis.
Infect Immun. 2017 Sep 20;85(10). doi: 10.1128/IAI.00289-17. Print 2017 Oct.
2
Small GTPase Immunity-Associated Proteins Mediate Resistance to Toxoplasma gondii Infection in Lewis Rat.
Infect Immun. 2018 Mar 22;86(4). doi: 10.1128/IAI.00582-17. Print 2018 Apr.
4
The rat Toxo1 locus directs toxoplasmosis outcome and controls parasite proliferation and spreading by macrophage-dependent mechanisms.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):744-9. doi: 10.1073/pnas.0506643103. Epub 2006 Jan 6.
5
Peroxiredoxin 3 promotes IL-12 production from macrophages and partially protects mice against infection with Toxoplasma gondii.
Parasitol Int. 2016 Dec;65(6 Pt A):741-748. doi: 10.1016/j.parint.2016.09.008. Epub 2016 Sep 16.
6
Control of Toxoplasma gondii infection by athymic LEW-Whn rnu rats.
Parasite Immunol. 2008 Jun-Jul;30(6-7):323-33. doi: 10.1111/j.1365-3024.2008.01029.x. Epub 2008 Apr 21.

引用本文的文献

2
The role of Nrf2 signaling in parasitic diseases and its therapeutic potential.
Heliyon. 2024 Jun 14;10(12):e32459. doi: 10.1016/j.heliyon.2024.e32459. eCollection 2024 Jun 30.
3
Host genetic backgrounds: the key to determining parasite-host adaptation.
Front Cell Infect Microbiol. 2023 Aug 10;13:1228206. doi: 10.3389/fcimb.2023.1228206. eCollection 2023.
4
Immune response against toxoplasmosis-some recent updates RH: immune response.
Int J Immunopathol Pharmacol. 2022 Jan-Dec;36:3946320221078436. doi: 10.1177/03946320221078436.
5
High resistance to infection in inducible nitric oxide synthase knockout rats.
iScience. 2021 Oct 15;24(11):103280. doi: 10.1016/j.isci.2021.103280. eCollection 2021 Nov 19.
6
Oxidative stress and neuroinflammation in a rat model of co-morbid obesity and psychogenic stress.
Behav Brain Res. 2021 Feb 26;400:112995. doi: 10.1016/j.bbr.2020.112995. Epub 2020 Dec 7.
7
Outer Retinal Oxidative Stress Measured In Vivo Using QUEnch-assiSTed (QUEST) OCT.
Invest Ophthalmol Vis Sci. 2019 Apr 1;60(5):1566-1570. doi: 10.1167/iovs.18-26164.
8
Advances and Challenges in Understanding Cerebral Toxoplasmosis.
Front Immunol. 2019 Feb 14;10:242. doi: 10.3389/fimmu.2019.00242. eCollection 2019.
9
D-cis-Diltiazem Can Produce Oxidative Stress in Healthy Depolarized Rods In Vivo.
Invest Ophthalmol Vis Sci. 2018 Jun 1;59(7):2999-3010. doi: 10.1167/iovs.18-23829.
10
Small GTPase Immunity-Associated Proteins Mediate Resistance to Toxoplasma gondii Infection in Lewis Rat.
Infect Immun. 2018 Mar 22;86(4). doi: 10.1128/IAI.00582-17. Print 2018 Apr.

本文引用的文献

2
Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer.
Adv Pharmacol. 2015;74:35-84. doi: 10.1016/bs.apha.2015.03.003. Epub 2015 May 27.
4
ALOX12 in human toxoplasmosis.
Infect Immun. 2014 Jul;82(7):2670-9. doi: 10.1128/IAI.01505-13. Epub 2014 Mar 31.
5
Role of metabolic H2O2 generation: redox signaling and oxidative stress.
J Biol Chem. 2014 Mar 28;289(13):8735-41. doi: 10.1074/jbc.R113.544635. Epub 2014 Feb 10.
6
Natural compounds as modulators of NADPH oxidases.
Oxid Med Cell Longev. 2013;2013:271602. doi: 10.1155/2013/271602. Epub 2013 Nov 27.
8
NLRP1 is an inflammasome sensor for Toxoplasma gondii.
Infect Immun. 2014 Jan;82(1):460-8. doi: 10.1128/IAI.01170-13. Epub 2013 Nov 11.
9
Reactive oxygen species in health and disease.
J Biomed Biotechnol. 2012;2012:936486. doi: 10.1155/2012/936486. Epub 2012 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验