Suppr超能文献

人类在复杂地形上行走的视觉控制关键阶段。

The critical phase for visual control of human walking over complex terrain.

机构信息

Center for Perceptual Systems, University of Texas at Austin, Austin, TX 78712;

Cognitive Science Department, Rensselaer Polytechnic Institute, Troy, NY 12180.

出版信息

Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6720-E6729. doi: 10.1073/pnas.1611699114. Epub 2017 Jul 24.

Abstract

To walk efficiently over complex terrain, humans must use vision to tailor their gait to the upcoming ground surface without interfering with the exploitation of passive mechanical forces. We propose that walkers use visual information to initialize the mechanical state of the body before the beginning of each step so the resulting ballistic trajectory of the walker's center-of-mass will facilitate stepping on target footholds. Using a precision stepping task and synchronizing target visibility to the gait cycle, we empirically validated two predictions derived from this strategy: (1) Walkers must have information about upcoming footholds during the second half of the preceding step, and (2) foot placement is guided by information about the position of the target foothold relative to the preceding base of support. We conclude that active and passive modes of control work synergistically to allow walkers to negotiate complex terrain with efficiency, stability, and precision.

摘要

为了在复杂地形上高效行走,人类必须利用视觉根据即将出现的地面状况调整步态,同时又不干扰对被动机械力的利用。我们提出,步行者在每一步开始之前,使用视觉信息来初始化身体的机械状态,以便步行者质心的弹道轨迹将有利于踏在目标立足点上。通过使用精确的踏步行走任务,并使目标可见性与步态周期同步,我们从该策略中验证了两个预测:(1)步行者必须在前一步的后半段期间获得关于即将到来的立足点的信息;(2)脚的放置受到目标立足点相对于前支撑基础的位置的信息的指导。我们的结论是,主动和被动控制模式协同工作,使步行者能够高效、稳定和精确地穿越复杂地形。

相似文献

1
The critical phase for visual control of human walking over complex terrain.
Proc Natl Acad Sci U S A. 2017 Aug 8;114(32):E6720-E6729. doi: 10.1073/pnas.1611699114. Epub 2017 Jul 24.
3
Control strategies for rapid, visually guided adjustments of the foot during continuous walking.
Exp Brain Res. 2019 Jul;237(7):1673-1690. doi: 10.1007/s00221-019-05538-7. Epub 2019 Apr 12.
4
Visual control of foot placement when walking over complex terrain.
J Exp Psychol Hum Percept Perform. 2014 Feb;40(1):106-15. doi: 10.1037/a0033101. Epub 2013 Jun 10.
5
Humans exploit the biomechanics of bipedal gait during visually guided walking over complex terrain.
Proc Biol Sci. 2013 May 8;280(1762):20130700. doi: 10.1098/rspb.2013.0700. Print 2013 Jul 7.
6
Visual regulation of gait: Zeroing in on a solution to the complex terrain problem.
J Exp Psychol Hum Percept Perform. 2017 Oct;43(10):1773-1790. doi: 10.1037/xhp0000435.
7
Binocular vision and the control of foot placement during walking in natural terrain.
Sci Rep. 2021 Oct 22;11(1):20881. doi: 10.1038/s41598-021-99846-0.
8
Gaze and the Control of Foot Placement When Walking in Natural Terrain.
Curr Biol. 2018 Apr 23;28(8):1224-1233.e5. doi: 10.1016/j.cub.2018.03.008. Epub 2018 Apr 12.
9
Visual guidance of the human foot during a step.
J Physiol. 2005 Dec 1;569(Pt 2):677-84. doi: 10.1113/jphysiol.2005.095869. Epub 2005 Sep 22.
10
The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective.
Hum Mov Sci. 2007 Aug;26(4):617-56. doi: 10.1016/j.humov.2007.04.003. Epub 2007 Jul 6.

引用本文的文献

1
Visual control of steering through multiple waypoints.
Sci Rep. 2025 Aug 25;15(1):31261. doi: 10.1038/s41598-025-15880-2.
2
Adapting lateral stepping control to walk on winding paths.
J Biomech. 2025 Feb;180:112495. doi: 10.1016/j.jbiomech.2025.112495. Epub 2025 Jan 7.
4
Analysis of foothold selection during locomotion using terrain reconstruction.
Elife. 2024 Dec 9;12:RP91243. doi: 10.7554/eLife.91243.
5
Probability of lateral instability while walking on winding paths.
J Biomech. 2024 Nov;176:112361. doi: 10.1016/j.jbiomech.2024.112361. Epub 2024 Oct 5.
6
The speed and phase of locomotion dictate saccade probability and simultaneous low-frequency power spectra.
Atten Percept Psychophys. 2025 Jan;87(1):245-260. doi: 10.3758/s13414-024-02932-4. Epub 2024 Jul 24.
8
Walking modulates visual detection performance according to stride cycle phase.
Nat Commun. 2024 Mar 7;15(1):2027. doi: 10.1038/s41467-024-45780-4.
9
Consequences of changing planned foot placement on balance control and forward progress.
J R Soc Interface. 2024 Feb;21(211):20230577. doi: 10.1098/rsif.2023.0577. Epub 2024 Feb 14.
10
Continuous peripersonal tracking accuracy is limited by the speed and phase of locomotion.
Sci Rep. 2023 Sep 8;13(1):14864. doi: 10.1038/s41598-023-40655-y.

本文引用的文献

1
Visual regulation of gait: Zeroing in on a solution to the complex terrain problem.
J Exp Psychol Hum Percept Perform. 2017 Oct;43(10):1773-1790. doi: 10.1037/xhp0000435.
2
Foot placement relies on state estimation during visually guided walking.
J Neurophysiol. 2017 Feb 1;117(2):480-491. doi: 10.1152/jn.00015.2016. Epub 2016 Oct 19.
3
Humans Can Continuously Optimize Energetic Cost during Walking.
Curr Biol. 2015 Sep 21;25(18):2452-6. doi: 10.1016/j.cub.2015.08.016. Epub 2015 Sep 10.
6
Taking the next step: cortical contributions to the control of locomotion.
Curr Opin Neurobiol. 2015 Aug;33:25-33. doi: 10.1016/j.conb.2015.01.011. Epub 2015 Jan 30.
7
Biomechanics and energetics of running on uneven terrain.
J Exp Biol. 2015 Mar;218(Pt 5):711-9. doi: 10.1242/jeb.106518. Epub 2015 Jan 23.
8
Long-range correlations in stride intervals may emerge from non-chaotic walking dynamics.
PLoS One. 2013 Sep 23;8(9):e73239. doi: 10.1371/journal.pone.0073239. eCollection 2013.
9
Gait initiation: the first four steps in adults aged 20-25 years, 65-79 years, and 80-91 years.
Gait Posture. 2014;39(1):490-4. doi: 10.1016/j.gaitpost.2013.08.037. Epub 2013 Sep 8.
10
Memory representations in natural tasks.
J Cogn Neurosci. 1995 Winter;7(1):66-80. doi: 10.1162/jocn.1995.7.1.66.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验