Song Meiyu, Song Xinyu, Bu Yuxiang
School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China.
Chemphyschem. 2017 Sep 20;18(18):2487-2498. doi: 10.1002/cphc.201700731. Epub 2017 Aug 23.
The intramolecular spin coupling interactions of bisphenol-like trinary-bridged diradicals [nitroxide-(para/meta)phenylene-X-phenylene(para/meta)-nitroxide, X=C=CH , O, BH, NH and SO ] were explored with an emphasis on the tuning role of the X coupler at the (U)B3LYP/6-311++G(d,p) level. Our results indicate that all designed trinary-bridged diradicals featuring a V-type structure with a bending angle of 104-130° and torsional angles of two phenylene rings being 20-90° exhibit different diradical character and magnetism, depending on the structures and properties of the X bridges. More interestingly, although meta/para-phenylene supports a ferromagnetic (FM)/antiferromagnetic (AFM) coupling, their combinations by using X as a trinary bridge can mediate spin coupling, but the coupling magnitude strongly depends on X. In general, a para/para or meta/meta combination with X leads to an open-shell singlet ground state and thus AFM, but the meta/meta combination considerably decreases the spin coupling interaction. In contrast, a para/meta combination with X produces a triplet ground state and FM. Their combination with a single-electron conjugation end coupler (C=CH ) leads to an inverse coupling regularity. All results can be reasonably explained by the spin alternation rule, molecular structures, and properties. In particular, detailed spin coupling mechanisms are suggested to involve cooperative through-space and through-bond pathways with different levels of cooperativity. This is rationalized with the X-induced bending of the diradicals not only modifying the through-bond (extended π conjugation) pathway but also provididng a through-space (face-to-face vs. side-to-side π-π interaction) possibility for spin coupling, in conjunction with twisting of the phenylene rings. Different contributions of the through-space and through-bond couplings are quantitatively distinguished and depend on the structure and property of the X coupler. Clearly, this work reports interesting aspects of the trinary bridged diradicals and also provides important information for the design of molecules for functional magnetic materials and tuning their magnetic properties.
研究了双酚类三元桥连双自由基[氮氧化物-(对位/间位)亚苯基-X-亚苯基(对位/间位)-氮氧化物,X = C=CH 、O、BH、NH和SO ]的分子内自旋耦合相互作用,重点关注X耦合器在(U)B3LYP/6-311++G(d,p)水平上的调节作用。我们的结果表明,所有设计的具有V型结构、弯曲角为104-130°且两个亚苯基环的扭转角为20-90°的三元桥连双自由基,根据X桥的结构和性质,表现出不同的双自由基特征和磁性。更有趣的是,尽管间位/对位亚苯基支持铁磁(FM)/反铁磁(AFM)耦合,但通过使用X作为三元桥将它们组合可以介导自旋耦合,但其耦合强度强烈依赖于X。一般来说, X的对位/对位或间位/间位组合导致开壳单重态基态,从而产生反铁磁,但间位/间位组合会显著降低自旋耦合相互作用。相比之下,X的对位/间位组合产生三重态基态和铁磁。它们与单电子共轭端耦合器(C=CH )的组合导致相反的耦合规律。所有结果都可以通过自旋交替规则、分子结构和性质得到合理解释。特别是,详细的自旋耦合机制表明涉及具有不同协同水平的协同空间和协同键途径。这是合理的,因为X引起双自由基的弯曲不仅改变了协同键(扩展π共轭)途径,而且还为自旋耦合提供了协同空间(面对面与侧对侧π-π相互作用)的可能性,同时伴随着亚苯基环的扭曲。协同空间和协同键耦合的不同贡献被定量区分,并取决于X耦合器的结构和性质。显然,这项工作报道了三元桥连双自由基的有趣方面,也为功能性磁性材料分子的设计及其磁性调节提供了重要信息。