Suppr超能文献

采用羟基磷灰石对 Ti6Al4V 进行激光表面处理和功能化,以应用于生物医学领域。

Ti6Al4V laser surface preparation and functionalization using hydroxyapatite for biomedical applications.

机构信息

Center for Microelectromechanical Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058, Guimarães, Portugal.

Physics Department, Porto Superior Engineering Institute, ISEP, Portugal.

出版信息

J Biomed Mater Res B Appl Biomater. 2018 May;106(4):1534-1545. doi: 10.1002/jbm.b.33964. Epub 2017 Jul 27.

Abstract

This work presents a novel texture design for implants surface functionalization, through the creation of line-shaped textures on Ti6Al4V surfaces and subsequent sintering of hydroxyapatite (HAp) powder into the designated locations. HAp-rich locations were designed to avoid HAp detachment during insertion, thus guaranteeing an effective osseointegration. This process starts by creating textured lines using a Nd:YAG laser, filling these lines with HAp powder and sintering HAp using a CO laser. The adhesion of HAp is known to be influenced by HAp sintering parameters, especially laser power and scanning speed and also by the textured lines manufacturing. Different laser parameters combinations were used to assess the sintering and adhesion of HAp to the textured lines. HAp adhesion was assessed by performing high energy ultrasonic cavitation tests and sliding tests mimicking an implant insertion, with Ti6Al4V/HAp specimens sliding against animal bone. The HAp content retained after these tests was measured and results showed that an excellent HAp sintering and adhesion was achieved when using a scan speed of 1 mm/s and laser power between 9 and 9.6 W. It is important to emphasize that results indicated that the HAp bioactivity was maintained when using these conditions, validating this functionalization process for the production of hip prosthesis with improved bioactivity. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1534-1545, 2018.

摘要

这项工作提出了一种新颖的植入物表面功能化的纹理设计,通过在 Ti6Al4V 表面创建线状纹理,并随后将羟基磷灰石(HAp)粉末烧结到指定位置。设计富含 HAp 的位置是为了避免插入过程中 HAp 的脱落,从而确保有效的骨整合。该过程首先使用 Nd:YAG 激光创建纹理线,用 HAp 粉末填充这些线,并使用 CO 激光烧结 HAp。已知 HAp 的附着力受 HAp 烧结参数的影响,特别是激光功率和扫描速度,以及纹理线制造的影响。使用不同的激光参数组合来评估 HAp 在纹理线上的烧结和附着力。通过进行高能超声空化试验和模拟植入物插入的滑动试验来评估 HAp 的附着力,Ti6Al4V/HAp 试样在动物骨上滑动。测量这些试验后保留的 HAp 含量,结果表明,当扫描速度为 1mm/s 且激光功率在 9 到 9.6W 之间时,实现了优异的 HAp 烧结和附着力。重要的是要强调,当使用这些条件时,结果表明 HAp 的生物活性得以保持,验证了这种功能化过程可用于生产具有改善的生物活性的髋关节假体。©2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B:1534-1545, 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验