Institute for Physics and IMN MacroNano®, Ilmenau University of Technology, Professor-Schmidt-Straβe 26, D-98693 Ilmenau, Germany. Department of Physics, College of Science, University of Al-Mustansiriyah, Baghdad, Iraq.
Nanotechnology. 2017 Oct 6;28(40):405501. doi: 10.1088/1361-6528/aa82b0. Epub 2017 Jul 27.
We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10 to 2.66 × 10 mM, with a sensitivity of 188.34 mA mM cm, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K ) of 1.69 s. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.
我们研究了使用有序异质 ZnO/ZnS 核/壳纳米管阵列 (CSNA) 制备高效葡萄糖传感器。修饰后的电极对亚铁氰化物/铁氰化物和葡萄糖传感表现出优异的电化学响应。此外,所制备的葡萄糖生物传感器在可接受的线性范围内(2.39×10 至 2.66×10 mM)表现出良好的性能,灵敏度为 188.34 mA mM cm,高于 ZnO 纳米管阵列对应物。实现了低检测限(24 μM),与基于传统结构的电极相比,这是很好的。此外,葡萄糖氧化酶的增强直接电化学表明 ZnO/ZnS CSNA 电极具有快速的电子转移,异质电子转移速率常数 (K) 为 1.69 s。快速的电子转移归因于修饰电极的高导电性。所呈现的 ZnS 壳可以促进未来传感器的构建,并在生物环境中增强 ZnO 表面。