Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
J Control Release. 2017 Sep 28;262:232-238. doi: 10.1016/j.jconrel.2017.07.037. Epub 2017 Jul 27.
Methodology to enhance intestinal absorption of macromolecular drugs is an important challenge for developing next-generation biomedicines. So far, various cationic cell-penetrating peptides have been reported to facilitate uptake of certain bioactive proteins. However, cyclic peptides might be better candidates, as they are more metabolically stable than linear peptides. Accordingly, we hypothesized that suitable cyclic peptides would promote the absorption of macromolecules across intestinal epithelium. To test this idea, we adopted Caco-2 cell permeability assay as an in vitro human intestinal absorption model, and M13 phage as a model of macromolecules. Successive screenings of a phage library displaying cyclic heptapeptides via a short GGGS linker yielded 3 hits. Among them, phage displaying cyclic heptapeptide DNPGNET (DNP-phage) showed the greatest permeability across a Caco-2 cell monolayer and mouse intestinal epithelium. Interestingly, DNPGNET (DNP) does not contain any basic amino acids. Its isoelectric point (pI) was estimated to be 2.72. It did not reduce the viability or tight-junction integrity of Caco-2 cells at concentrations up to 100μM for 24h. Uptake of either DNP-phage or a fluorescence-labeled DNP derivative (AC-DNPGNET-CGGGS modified with 5/6-FAM at the C-terminal; the cysteines serve to generate the cyclic peptide via disulfide bond formation, and GGGS is the phage linker) by Caco-2 cells was inhibited by low temperature, unlabeled AC-DNPGNET-CGGGS and EIPA, a macropinocytosis inhibitor. Thus, DNP appears to facilitate transcellular permeability of phages via macropinocytosis, but not paracellular diffusion. These findings indicate that DNP is a promising candidate as a carrier to promote intestinal absorption of macromolecular drugs.
方法学,以提高肠道吸收的大分子药物是一个重要的挑战,为发展新一代的生物医学。到目前为止,各种阳离子细胞穿透肽已被报道,以促进某些生物活性蛋白的摄取。然而,环状肽可能是更好的候选者,因为它们比线性肽更稳定。因此,我们假设合适的环状肽将促进大分子的吸收通过肠上皮细胞。为了验证这一观点,我们采用 Caco-2 细胞通透性测定作为体外人肠吸收模型,和 M13 噬菌体作为大分子的模型。通过短 GGGS 接头展示环状七肽的噬菌体文库的连续筛选产生了 3 个命中。其中,噬菌体展示的环状七肽 DNPGNET(DNP-噬菌体)显示出最大的通透性通过 Caco-2 细胞单层和小鼠肠上皮细胞。有趣的是,DNPGNET(DNP)不包含任何碱性氨基酸。它的等电点(pI)估计为 2.72。它不减少细胞活力或紧密连接的完整性的 Caco-2 细胞在浓度高达 100μM 24 小时。摄取 DNP-噬菌体或荧光标记的 DNP 衍生物(AC-DNPGNET-CGGGS 用 5/6-FAM 在 C 末端修饰;半胱氨酸的目的是通过形成二硫键生成环状肽,和 GGGS 是噬菌体接头)的 Caco-2 细胞被抑制低温,未标记的 AC-DNPGNET-CGGGS 和 EIPA,巨胞饮抑制剂。因此,DNP 似乎通过巨胞饮促进噬菌体的跨细胞通透性,但不是通过细胞旁扩散。这些发现表明 DNP 是一种很有前途的候选药物载体,以促进大分子药物的肠道吸收。