Suppr超能文献

利用随机森林算法预测中国黄土高原地上草原生物量。

Prediction of aboveground grassland biomass on the Loess Plateau, China, using a random forest algorithm.

机构信息

State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, P.R. China.

University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.

出版信息

Sci Rep. 2017 Jul 31;7(1):6940. doi: 10.1038/s41598-017-07197-6.

Abstract

Grasslands are an important component of terrestrial ecosystems that play a crucial role in the carbon cycle and climate change. In this study, we collected aboveground biomass (AGB) data from 223 grassland quadrats distributed across the Loess Plateau from 2011 to 2013 and predicted the spatial distribution of the grassland AGB at a 100-m resolution from both meteorological station and remote sensing data (TM and MODIS) using a Random Forest (RF) algorithm. The results showed that the predicted grassland AGB on the Loess Plateau decreased from east to west. Vegetation indexes were positively correlated with grassland AGB, and the normalized difference vegetation index (NDVI) acquired from TM data was the most important predictive factor. Tussock and shrub tussock had the highest AGB, and desert steppe had the lowest. Rainfall higher than 400 m might have benefitted the grassland AGB. Compared with those obtained for the bagging, mboost and the support vector machine (SVM) models, higher values for the mean Pearson coefficient (R) and the symmetric index of agreement (λ) were obtained for the RF model, indicating that this RF model could reasonably estimate the grassland AGB (65.01%) on the Loess Plateau.

摘要

草原是陆地生态系统的重要组成部分,在碳循环和气候变化中起着至关重要的作用。本研究于 2011-2013 年在黄土高原采集了 223 个草原样方的地上生物量(AGB)数据,利用随机森林(RF)算法,基于气象站和遥感数据(TM 和 MODIS)预测了黄土高原 100m 分辨率的草原 AGB 的空间分布。结果表明,黄土高原草原 AGB 从东向西逐渐减少。植被指数与草原 AGB 呈正相关,其中 TM 数据获取的归一化差异植被指数(NDVI)是最重要的预测因子。草丛和灌丛草丛的 AGB 最高,荒漠草原的 AGB 最低。降雨量超过 400mm 可能有利于草原 AGB。与袋装、mboost 和支持向量机(SVM)模型相比,RF 模型的平均皮尔逊相关系数(R)和一致性对称指数(λ)更高,表明该 RF 模型可以合理地估计黄土高原草原 AGB(65.01%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77f3/5537351/732269b7ec81/41598_2017_7197_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验