Suppr超能文献

具有中等臂数的星型聚电解质的溶液性质。

Solution properties of star polyelectrolytes having a moderate number of arms.

机构信息

Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

J Chem Phys. 2017 Jul 28;147(4):044906. doi: 10.1063/1.4995534.

Abstract

We investigate polyelectrolyte stars having a moderate number of arms by molecular dynamics simulations of a coarse-grained model over a range of polyelectrolyte concentrations, where both the counter-ions and solvent are treated explicitly. This class of polymeric materials is found to exhibit rather distinct static and dynamic properties from linear and highly branched star polyelectrolyte solutions emphasized in past studies. Moderately branched polymers are particle-like in many of their properties, while at the same time they exhibit large fluctuations in size and shape as in the case of linear chain polymers. Correspondingly, these fluctuations suppress crystallization at high polymer concentrations, leading apparently to an amorphous rather than crystalline solid state at high polyelectrolyte concentrations. We quantify the onset of this transition by measuring the polymer size and shape fluctuations of our model star polyelectrolytes and the static and dynamic structure factor of these solutions over a wide range of polyelectrolyte concentration. Our findings for star polyelectrolytes are similar to those of polymer-grafted nanoparticles having a moderate grafting density, which is natural given the soft and highly deformable nature of both of these "particles."

摘要

我们通过对粗粒化模型的分子动力学模拟研究了具有中等臂数的聚电解质星,在该模型中,反离子和溶剂都被明确考虑。与过去研究中强调的线性和高度支化的星型聚电解质溶液相比,这类聚合材料表现出相当独特的静态和动态特性。在许多性质上,中等支化的聚合物具有粒子状的性质,而同时它们也表现出类似于线性链聚合物的大小和形状的大波动。相应地,这些波动抑制了高聚合物浓度下的结晶,导致在高聚电解质浓度下显然出现无定形而不是结晶固体状态。我们通过测量我们模型星型聚电解质的聚合物大小和形状波动以及这些溶液在很宽的聚电解质浓度范围内的静态和动态结构因子,来量化这种转变的开始。我们对星型聚电解质的发现与具有中等接枝密度的聚合物接枝纳米粒子的发现相似,这是由于这两种“粒子”都具有柔软和高度可变形的性质,因此是自然的。

相似文献

1
Solution properties of star polyelectrolytes having a moderate number of arms.
J Chem Phys. 2017 Jul 28;147(4):044906. doi: 10.1063/1.4995534.
2
Polyelectrolyte association and solvation.
J Chem Phys. 2018 Oct 28;149(16):163305. doi: 10.1063/1.5030530.
3
Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions.
Macromolecules. 2024 Dec 27;58(1):240-248. doi: 10.1021/acs.macromol.4c01374. eCollection 2025 Jan 14.
5
Simulations of ionization equilibria in weak polyelectrolyte solutions and gels.
Soft Matter. 2019 Feb 6;15(6):1155-1185. doi: 10.1039/c8sm02085j.
6
Self-assembly of polymer-grafted nanoparticles in solvent-free conditions.
Soft Matter. 2016 Nov 28;12(47):9527-9537. doi: 10.1039/c6sm02063a.
7
Coarse-Grained Simulations of Three-Armed Star Polymer Melts and Comparison with Linear Chains.
J Phys Chem B. 2018 Nov 8;122(44):10210-10218. doi: 10.1021/acs.jpcb.8b03104. Epub 2018 Oct 26.

引用本文的文献

1
Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions.
Macromolecules. 2024 Dec 27;58(1):240-248. doi: 10.1021/acs.macromol.4c01374. eCollection 2025 Jan 14.
2
Salt-Induced Diffusion of Star and Linear Polyelectrolytes within Multilayer Films.
Macromolecules. 2023 Jul 10;56(14):5434-5445. doi: 10.1021/acs.macromol.3c00777. eCollection 2023 Jul 25.
3
Bottlebrush polymers in the melt and polyelectrolytes in solution share common structural features.
Proc Natl Acad Sci U S A. 2020 Mar 10;117(10):5168-5175. doi: 10.1073/pnas.1916362117. Epub 2020 Feb 24.
5
Polyelectrolyte association and solvation.
J Chem Phys. 2018 Oct 28;149(16):163305. doi: 10.1063/1.5030530.
7
: A Perspective on Polyelectrolyte Solutions.
Macromolecules. 2017 Dec 26;50(24):9528-9560. doi: 10.1021/acs.macromol.7b01929. Epub 2017 Dec 14.

本文引用的文献

1
Concentration Dependence of Ring Polymer Conformations from Monte Carlo Simulations.
ACS Macro Lett. 2013 Apr 16;2(4):296-300. doi: 10.1021/mz300587v. Epub 2013 Mar 26.
2
ZENO: Software for calculating hydrodynamic, electrical, and shape properties of polymer and particle suspensions.
J Res Natl Inst Stand Technol. 2017 Mar 9;122:1-2. doi: 10.6028/jres.122.020. eCollection 2017.
4
Particle localization and hyperuniformity of polymer-grafted nanoparticle materials.
Ann Phys. 2017 May;529(5). doi: 10.1002/andp.201600342. Epub 2017 Mar 23.
5
Self-assembly of polymer-grafted nanoparticles in solvent-free conditions.
Soft Matter. 2016 Nov 28;12(47):9527-9537. doi: 10.1039/c6sm02063a.
6
Hyperuniformity and its generalizations.
Phys Rev E. 2016 Aug;94(2-1):022122. doi: 10.1103/PhysRevE.94.022122. Epub 2016 Aug 15.
8
10
Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory.
J Chem Phys. 2015 Oct 7;143(13):131101. doi: 10.1063/1.4932061.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验