Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
Dalton Trans. 2017 Aug 22;46(33):10908-10925. doi: 10.1039/c7dt01742a.
In this work, a trifunctional N,O-building block, 5-(4-carboxyphenoxy)nicotinic acid (Hcpna), that combines three distinct types of functional groups (COOH, N-pyridyl, and O-ether) was used for the hydrothermal assembly of thirteen new coordination compounds: [Co(μ-Hcpna)] (1), [Mn(μ-cpna)(HO)] (2), [Mn(μ-cpna)(HO)] (3), [Mn(μ-cpna)(2,2'-bipy)(HO)] (4), {[Ni(μ-cpna)(2,2'-bipy)(HO)]·HO} (5), {[Cd(μ-cpna)(2,2'-bipy)]·2HO} (6), [Zn(μ-cpna)(2,2'-bipy)] (7), [Cu(μ-cpna)(2,2'-bipy)(HO)] (8), {[Mn(μ-cpna)(phen)]·6HO} (9), {[Ni(μ-cpna)(phen)(HO)]·HO} (10), [Zn(μ-cpna)(phen)] (11), {[Pb(μ-cpna)(phen)]·HO} (12), and [Ni(μ-cpna)(4,4'-bipy)(HO)] (13). These products were synthesized from the corresponding metal(ii) chlorides, Hcpna, NaOH, and optional N-donor supporting ligands or templates {bis(4-pyridyl)amine (bpa), 2,2'-bipyridine (2,2'-bipy), 4,4'-bipyridine (4,4'-bipy), or 1,10-phenanthroline (phen)}. Products 1-13 were characterized in the solid state by standard methods, including elemental and thermogravimetric analysis (TGA), IR spectroscopy, and powder (PXRD) and single-crystal X-ray diffraction. The structures of 1-13 feature distinct structural types, namely the 3D metal-organic frameworks (MOFs 1-3), the 2D coordination polymers (5, 6, 10, 12, and 13), the 1D coordination polymers (4, 8, and 9), and the 0D discrete cyclic dimers (7 and 11). Such a wide structural diversity of 1-13 is driven by various factors, including the type of the metal(ii) node, the deprotonation degree of Hcpna, and/or the type of supporting ligand or template. Notably, an addition of bpa can tune the structure of MOF 3 by the template effect. Topological classification of underlying metal-organic networks was performed, leading to several distinct topological nets: rtl (in 1), hxg-d-4-C2/m (in 2), sra (in 3), 2C1 (in 4, 8 and 9), fes (in 5, 10, and 12), hcb (in 6), and 3,4L83 (in 13). The magnetic behavior of 1-5, 8-10, and 13 was studied and theoretically modeled, disclosing antiferromagnetic interactions. The luminescence behavior of 6, 7, 11, and 12 was also investigated.
在这项工作中,使用了一种三官能团的 N,O-建筑块,5-(4-羧基苯氧基)烟酸(Hcpna),它结合了三种不同类型的官能团(COOH、N-吡啶基和 O-醚),用于水热组装十三种新的配位化合物:[Co(μ-Hcpna)](1)、[Mn(μ-cpna)(HO)](2)、[Mn(μ-cpna)(HO)](3)、[Mn(μ-cpna)(2,2'-bipy)(HO)](4)、{[Ni(μ-cpna)(2,2'-bipy)(HO)]·HO}(5)、{[Cd(μ-cpna)(2,2'-bipy)]·2HO}(6)、[Zn(μ-cpna)(2,2'-bipy)](7)、[Cu(μ-cpna)(2,2'-bipy)(HO)](8)、{[Mn(μ-cpna)(phen)]·6HO}(9)、{[Ni(μ-cpna)(phen)(HO)]·HO}(10)、[Zn(μ-cpna)(phen)](11)、{[Pb(μ-cpna)(phen)]·HO}(12)和[Ni(μ-cpna)(4,4'-bipy)(HO)](13)。这些产物是由相应的金属(ii)氯化物、Hcpna、NaOH 和可选的 N-供体支持配体或模板{双(4-吡啶基)胺(bpa)、2,2'-联吡啶(2,2'-bipy)、4,4'-联吡啶(4,4'-bipy)或 1,10-菲咯啉(phen)}合成的。产物 1-13 通过标准方法在固态下进行了表征,包括元素和热重分析(TGA)、红外光谱、粉末(PXRD)和单晶 X 射线衍射。1-13 的结构具有不同的结构类型,即 3D 金属有机骨架(MOFs 1-3)、2D 配位聚合物(5、6、10、12 和 13)、1D 配位聚合物(4、8 和 9)和 0D 离散环式二聚体(7 和 11)。1-13 如此广泛的结构多样性是由多种因素驱动的,包括金属(ii)节点的类型、Hcpna 的去质子化程度和/或支持配体或模板的类型。值得注意的是,bpa 的添加可以通过模板效应来调节 MOF 3 的结构。对基础金属有机网络的拓扑分类进行了研究,得到了几个不同的拓扑网络:rtl(在 1 中)、hxg-d-4-C2/m(在 2 中)、sra(在 3 中)、2C1(在 4、8 和 9 中)、fes(在 5、10 和 12 中)、hcb(在 6 中)和 3,4L83(在 13 中)。研究了 1-5、8-10 和 13 的磁行为,并进行了理论建模,揭示了反铁磁相互作用。还研究了 6、7、11 和 12 的发光行为。