Suppr超能文献

樽海鞘链状群体游泳的流体动力学优势。

Hydrodynamic advantages of swimming by salp chains.

作者信息

Sutherland Kelly R, Weihs Daniel

机构信息

Oregon Institute of Marine Biology, University of Oregon, Eugene, OR, USA

Department of Aerospace Engineering and Autonomous Systems Program, Technion, Haifa, Israel.

出版信息

J R Soc Interface. 2017 Aug;14(133). doi: 10.1098/rsif.2017.0298.

Abstract

Salps are marine invertebrates comprising multiple jet-propelled swimming units during a colonial life-cycle stage. Using theory, we show that asynchronous swimming with multiple pulsed jets yields substantial hydrodynamic benefit due to the production of steady swimming velocities, which limit drag. Laboratory comparisons of swimming kinematics of aggregate salps ( and ) using high-speed video supported that asynchronous swimming by aggregates results in a smoother velocity profile and showed that this smoother velocity profile is the result of uncoordinated, asynchronous swimming by individual zooids. flow visualizations of swimming wakes revealed that another consequence of asynchronous swimming is that fluid interactions between jet wakes are minimized. Although the advantages of multi-jet propulsion have been mentioned elsewhere, this is the first time that the theory has been quantified and the role of asynchronous swimming verified using experimental data from the laboratory and the field.

摘要

樽海鞘是一种海洋无脊椎动物,在群体生命周期阶段由多个喷气推进的游泳单元组成。通过理论分析,我们发现多个脉冲喷气式的异步游泳由于产生稳定的游泳速度而带来显著的水动力优势,这限制了阻力。使用高速视频对群体樽海鞘( 和 )游泳运动学进行的实验室比较支持了群体的异步游泳会产生更平滑的速度剖面这一观点,并表明这种更平滑的速度剖面是个体游动孢子不协调、异步游泳的结果。 游泳尾流的流动可视化显示,异步游泳的另一个结果是喷气尾流之间的流体相互作用最小化。尽管多喷气推进的优势在其他地方已有提及,但这是首次对该理论进行量化,并利用来自实验室和实地的实验数据验证了异步游泳的作用。

相似文献

1
Hydrodynamic advantages of swimming by salp chains.
J R Soc Interface. 2017 Aug;14(133). doi: 10.1098/rsif.2017.0298.
2
Comparative jet wake structure and swimming performance of salps.
J Exp Biol. 2010 Sep;213(Pt 17):2967-75. doi: 10.1242/jeb.041962.
3
Cool your jets: biological jet propulsion in marine invertebrates.
J Exp Biol. 2021 Jun 15;224(12). doi: 10.1242/jeb.222083. Epub 2021 Jun 17.
4
Jet flow in steadily swimming adult squid.
J Exp Biol. 2005 Mar;208(Pt 6):1125-46. doi: 10.1242/jeb.01507.
5
'Optimal' vortex rings and aquatic propulsion mechanisms.
Proc Biol Sci. 2004 Mar 22;271(1539):647-53. doi: 10.1098/rspb.2003.2601.
7
Ontogenetic propulsive transitions by Sarsia tubulosa medusae.
J Exp Biol. 2015 Aug;218(Pt 15):2333-43. doi: 10.1242/jeb.115832. Epub 2015 May 29.
8
Numerical study on the hydrodynamics of thunniform bio-inspired swimming under self-propulsion.
PLoS One. 2017 Mar 31;12(3):e0174740. doi: 10.1371/journal.pone.0174740. eCollection 2017.
10
Kinematics and hydrodynamics of linear acceleration in eels, Anguilla rostrata.
Proc Biol Sci. 2004 Dec 22;271(1557):2535-40. doi: 10.1098/rspb.2004.2901.

引用本文的文献

1
Scaling of respiration in colonial invertebrates.
Limnol Oceanogr. 2024 Aug;69(8):1746-1756. doi: 10.1002/lno.12626. Epub 2024 Jul 5.
2
Spinning and corkscrewing of oceanic macroplankton revealed through in situ imaging.
Sci Adv. 2024 May 17;10(20):eadm9511. doi: 10.1126/sciadv.adm9511. Epub 2024 May 15.
3
The hydrodynamics and kinematics of the appendicularian tail underpin peristaltic pumping.
J R Soc Interface. 2023 Nov;20(208):20230404. doi: 10.1098/rsif.2023.0404. Epub 2023 Nov 15.
4
A New Molecular Phylogeny of Salps (Tunicata: Thalicea: Salpida) and the Evolutionary History of Their Colonial Architecture.
Integr Org Biol. 2023 Sep 27;5(1):obad037. doi: 10.1093/iob/obad037. eCollection 2023.
5
Bio-inspired soft pneumatic actuator based on a kresling-like pattern with a rigid skeleton.
J Adv Res. 2024 Sep;63:91-102. doi: 10.1016/j.jare.2023.10.004. Epub 2023 Oct 12.
6
Distributed propulsion enables fast and efficient swimming modes in physonect siphonophores.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2202494119. doi: 10.1073/pnas.2202494119. Epub 2022 Nov 28.
7
Application of job shop scheduling approach in green patient flow optimization using a hybrid swarm intelligence.
Comput Ind Eng. 2022 Oct;172:108603. doi: 10.1016/j.cie.2022.108603. Epub 2022 Aug 28.
8
Benthic jellyfish dominate water mixing in mangrove ecosystems.
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2025715118.

本文引用的文献

1
Rethinking the Role of Salps in the Ocean.
Trends Ecol Evol. 2016 Sep;31(9):720-733. doi: 10.1016/j.tree.2016.06.007. Epub 2016 Jul 18.
2
Multi-jet propulsion organized by clonal development in a colonial siphonophore.
Nat Commun. 2015 Sep 1;6:8158. doi: 10.1038/ncomms9158.
3
Comparative jet wake structure and swimming performance of salps.
J Exp Biol. 2010 Sep;213(Pt 17):2967-75. doi: 10.1242/jeb.041962.
4
5
Jet flow in steadily swimming adult squid.
J Exp Biol. 2005 Mar;208(Pt 6):1125-46. doi: 10.1242/jeb.01507.
6
Energetic advantages of burst-and-coast swimming of fish at high speeds.
J Exp Biol. 1982 Apr;97:169-78. doi: 10.1242/jeb.97.1.169.
7
Energetic advantages of burst swimming of fish.
J Theor Biol. 1974 Nov;48(1):215-29. doi: 10.1016/0022-5193(74)90192-1.
8
Locomotion and propagated skin impulses in salps (Tunicata: Thaliacea).
Biol Bull. 1977 Aug;153(1):180-97. doi: 10.2307/1540700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验