Suppr超能文献

具有不同形式后天光合营养的海洋原生生物呈现出截然不同的生物地理学特征和丰度。

Oceanic protists with different forms of acquired phototrophy display contrasting biogeographies and abundance.

作者信息

Leles S G, Mitra A, Flynn K J, Stoecker D K, Hansen P J, Calbet A, McManus G B, Sanders R W, Caron D A, Not F, Hallegraeff G M, Pitta P, Raven J A, Johnson M D, Glibert P M, Våge S

机构信息

Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK.

Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK

出版信息

Proc Biol Sci. 2017 Aug 16;284(1860). doi: 10.1098/rspb.2017.0664.

Abstract

This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40-60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on 'stolen' chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research.

摘要

对具有后天光合营养的海洋原生浮游生物的全球生物地理学进行的首次综合分析表明,这些混合营养生物无处不在且数量丰富;然而,它们的生物地理学在不同功能组之间存在显著差异。这些混合营养生物缺乏光合作用的组成能力(即非组成型混合营养生物,NCMs),它们通过整合猎物质体或与光合微生物的内共生关系来获得光合营养潜力。对实地数据的分析表明,传统上被标记为(非光合营养)微型浮游动物的浮游生物中有40%-60%实际上是NCMs,它们除了吞噬营养外还利用后天光合营养。特化的NCMs从特定猎物中获取叶绿体或内共生体,而泛化的NCMs从多种猎物中获取叶绿体。这些不同功能类型的NCMs呈现出明显的季节和全球空间分布模式。依赖“窃取”叶绿体的混合营养生物受猎物多样性和丰度的控制,在高生物量区域占主导地位。含有完整共生体的混合营养生物存在于所有水域,尤其在贫营养的开阔海洋系统中占主导地位。本研究揭示的不同混合营养功能类型在大洋区域的时空分布模式差异,挑战了对海洋食物网结构的传统解释。具有后天光合营养的混合营养生物(NCMs)在海洋研究中值得得到更多认可。

相似文献

2
Mixotrophic protists display contrasted biogeographies in the global ocean.
ISME J. 2019 Apr;13(4):1072-1083. doi: 10.1038/s41396-018-0340-5. Epub 2019 Jan 14.
4
Light dependence in the phototrophy-phagotrophy balance of constitutive and non-constitutive mixotrophic protists.
Oecologia. 2022 Dec;200(3-4):295-306. doi: 10.1007/s00442-022-05226-4. Epub 2022 Aug 13.
5
The Mixoplankton Database (MDB): Diversity of photo-phago-trophic plankton in form, function, and distribution across the global ocean.
J Eukaryot Microbiol. 2023 Jul-Aug;70(4):e12972. doi: 10.1111/jeu.12972. Epub 2023 Apr 16.
6
Bacterivory by phototrophic picoplankton and nanoplankton in Arctic waters.
FEMS Microbiol Ecol. 2012 Nov;82(2):242-53. doi: 10.1111/j.1574-6941.2011.01253.x. Epub 2011 Dec 5.
7
Mixotrophy in the Marine Plankton.
Ann Rev Mar Sci. 2017 Jan 3;9:311-335. doi: 10.1146/annurev-marine-010816-060617. Epub 2016 Jul 6.
9
10

引用本文的文献

1
Prolonged light exposure time enhances the photosynthetic investment in osmotrophic .
Appl Environ Microbiol. 2025 Jun 24:e0103225. doi: 10.1128/aem.01032-25.
2
Predicting optimal mixotrophic metabolic strategies in the global ocean.
Sci Adv. 2024 Dec 13;10(50):eadr0664. doi: 10.1126/sciadv.adr0664.
3
Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin.
ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae150.
5
Mixoplankton and mixotrophy: future research priorities.
J Plankton Res. 2023 Jun 9;45(4):576-596. doi: 10.1093/plankt/fbad020. eCollection 2023 Jul-Aug.
6
Trophic strategies explain the ocean niches of small eukaryotic phytoplankton.
Proc Biol Sci. 2023 Jan 25;290(1991):20222021. doi: 10.1098/rspb.2022.2021.
7
Diversity of Microbial Eukaryotes Along the West Antarctic Peninsula in Austral Spring.
Front Microbiol. 2022 May 16;13:844856. doi: 10.3389/fmicb.2022.844856. eCollection 2022.
9
Deuterium in marine organic biomarkers: toward a new tool for quantifying aquatic mixotrophy.
New Phytol. 2022 May;234(3):776-782. doi: 10.1111/nph.18023. Epub 2022 Mar 4.
10
Mixoplankton interferences in dilution grazing experiments.
Sci Rep. 2021 Dec 13;11(1):23849. doi: 10.1038/s41598-021-03176-0.

本文引用的文献

1
Mixotrophy everywhere on land and in water: the grand écart hypothesis.
Ecol Lett. 2017 Feb;20(2):246-263. doi: 10.1111/ele.12714. Epub 2016 Dec 28.
2
Mixotrophy in the Marine Plankton.
Ann Rev Mar Sci. 2017 Jan 3;9:311-335. doi: 10.1146/annurev-marine-010816-060617. Epub 2016 Jul 6.
3
In situ imaging reveals the biomass of giant protists in the global ocean.
Nature. 2016 Apr 28;532(7600):504-7. doi: 10.1038/nature17652. Epub 2016 Apr 20.
4
DINOPHYSIS CAUDATA (DINOPHYCEAE) SEQUESTERS AND RETAINS PLASTIDS FROM THE MIXOTROPHIC CILIATE PREY MESODINIUM RUBRUM(1).
J Phycol. 2012 Jun;48(3):569-79. doi: 10.1111/j.1529-8817.2012.01150.x. Epub 2012 May 8.
6
Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.
Science. 2015 May 22;348(6237):1261605. doi: 10.1126/science.1261605.
8
Mixotrophic basis of Atlantic oligotrophic ecosystems.
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5756-60. doi: 10.1073/pnas.1118179109. Epub 2012 Mar 26.
9
The acquisition of phototrophy: adaptive strategies of hosting endosymbionts and organelles.
Photosynth Res. 2011 Jan;107(1):117-32. doi: 10.1007/s11120-010-9546-8. Epub 2010 Apr 20.
10
High bacterivory by the smallest phytoplankton in the North Atlantic Ocean.
Nature. 2008 Sep 11;455(7210):224-6. doi: 10.1038/nature07236.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验