Laboratory for Optical Spectroscopy of Nanostructures, Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland.
Technische Physik, Physikalisches Institut and Wilhelm Conrad Röntgen-Research Center for Complex Material Systems, Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany.
Sci Rep. 2017 Aug 2;7(1):7094. doi: 10.1038/s41598-017-07470-8.
Semiconductor microcavities are often influenced by structural imperfections, which can disturb the flow and dynamics of exciton-polariton condensates. Additionally, in exciton-polariton condensates there is a variety of dynamical scenarios and instabilities, owing to the properties of the incoherent excitonic reservoir. We investigate the dynamics of an exciton-polariton condensate which emerges in semiconductor microcavity subject to disorder, which determines its spatial and temporal behaviour. Our experimental data revealed complex burst-like time evolution under non-resonant optical pulsed excitation. The temporal patterns of the condensate emission result from the intrinsic disorder and are driven by properties of the excitonic reservoir, which decay in time much slower with respect to the polariton condensate lifetime. This feature entails a relaxation oscillation in polariton condensate formation, resulting in ultrafast emission pulses of coherent polariton field. The experimental data can be well reproduced by numerical simulations, where the condensate is coupled to the excitonic reservoir described by a set of rate equations. Theory suggests the existence of slow reservoir temporarily emptied by stimulated scattering to the condensate, generating ultrashort pulses of the condensate emission.
半导体微腔通常会受到结构不完善的影响,这会干扰激子极化激元凝聚体的流动和动力学。此外,由于非相干激子库的特性,激子极化激元凝聚体中存在各种动力学场景和不稳定性。我们研究了在无序条件下出现在半导体微腔中的激子极化激元凝聚体的动力学,无序决定了它的时空行为。我们的实验数据揭示了在非共振光脉冲激发下复杂的突发时间演化。凝聚体发射的时间模式源于内在的无序,并由激子库的特性驱动,激子库的衰减时间比极化激元凝聚体的寿命长得多。这一特性导致了极化激元凝聚体形成中的弛豫振荡,从而产生相干极化激元场的超快发射脉冲。实验数据可以通过数值模拟很好地再现,其中凝聚体与激子库耦合,激子库由一组速率方程描述。理论表明,存在一个由受激散射暂时排空的慢储层,向凝聚体注入超短脉冲的凝聚体发射。