Faulkenberry Thomas J
Department of Psychological Sciences, Tarleton State UniversityStephenville, TX, United States.
Front Psychol. 2017 Jul 18;8:1225. doi: 10.3389/fpsyg.2017.01225. eCollection 2017.
Current theories of mathematical cognition offer competing accounts of the interplay between encoding and calculation in mental arithmetic. Additive models propose that manipulations of problem format do not interact with the cognitive processes used in calculation. Alternatively, interactive models suppose that format manipulations have a direct effect on calculation processes. In the present study, we tested these competing models by fitting participants' RT distributions in an arithmetic verification task with a single-boundary accumulator model (the shifted Wald distribution). We found that in addition to providing a more complete description of RT distributions, the accumulator model afforded a potentially more sensitive test of format effects. Specifically, we found that format affected drift rate, which implies that problem format has a direct impact on calculation processes. These data give further support for an interactive model of mental arithmetic.
当前的数学认知理论对心算中编码与计算之间的相互作用给出了相互竞争的解释。加法模型认为,问题格式的操作不会与计算中使用的认知过程相互作用。相反,交互模型则假定格式操作会对计算过程产生直接影响。在本研究中,我们通过用单边界累加器模型(移位的 Wald 分布)拟合参与者在算术验证任务中的反应时分布,对这些相互竞争的模型进行了测试。我们发现,累加器模型除了能更完整地描述反应时分布外,还能对格式效应进行潜在更敏感的测试。具体而言,我们发现格式会影响漂移率,这意味着问题格式对计算过程有直接影响。这些数据为心算的交互模型提供了进一步的支持。