Department of Chemistry, Faculty of Science, Ain Shams University , Abbassia, Cairo 11566, Egypt.
Chemistry Department, Faculty of Science, Cairo University , 12613 Giza, Egypt.
ACS Appl Mater Interfaces. 2017 Sep 6;9(35):30115-30126. doi: 10.1021/acsami.7b07611. Epub 2017 Aug 22.
Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH) as promising catalysts for the electrochemical generation of hydrogen (H) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NHF at room temperature for 15 min. These two etching processes yielded a thin layer of TiH (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F-free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH/nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of AuTi phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH. Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH/nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics for the HER with onset potentials as low as -22 mV vs. RHE, high exchange current density of 0.7 mA cm, and a Tafel slope of 113 mV dec. These HER electrochemical kinetic parameters are very close to those measured here for a commercial Pt/C catalyst (onset potential: -20 mV, Tafel slope: 110 mV dec, and exchange current density: 0.75 mA cm). The high catalytic activity of these materials was attributed to the catalytic impacts of both TiH phase and self-supported Au NPs (active sites for the catalytic reduction of water to H), in addition to their nanostructured features which provide a large-surface area for the HER.
自支撑电催化剂是一类新型材料,在各种电化学过程中表现出高催化性能,可直接装备在能量转换器件中。本文首次报道了稀疏的 Au NPs 自支撑在刻蚀 Ti(纳米刻蚀 Ti 基底上自支撑 TiH)上,作为在 KOH 溶液中电化学生成氢(H)的有前途的催化剂。清洁后的抛光 Ti 基底在室温下用浓 H2SO4 溶液在无和有 0.1 M NHF 的条件下蚀刻 15 分钟。这两种蚀刻过程在具有不同形态的纳米刻蚀 Ti 基底上生成了一层薄的 TiH(蚀刻过程的腐蚀产物)。无 F 蚀刻过程导致形成平行通道(平均宽度:200nm),其中每个通道由一系列圆形腔组成(平均宽度:150nm),而在 F 存在的情况下蚀刻得到 Ti 表面具有纳米槽(平均宽度:100nm),呈平行取向。然后通过将 Au NPs 原位(自支撑)浸入标准金溶液中,在室温下无需使用稳定剂或还原剂,在这种刻蚀表面上生长 Au NPs/TiH/纳米结构 Ti 催化剂。这些材料通过扫描电子显微镜/能谱(SEM/EDS)、掠入射 X 射线衍射(GIXRD)和 X 射线光电子能谱(XPS)进行了表征。GIXRD 证实了 AuTi 相的形成,从而表明负载的 Au NPs 与基底表面之间存在强烈的化学相互作用(XPS 也证明了这一点)以及 TiH 的化学组成的氢化钛相。在 0.1 M KOH 溶液中的电化学测量表明,我们合成的催化剂具有出色的析氢反应(HER)电催化活性,其中 Au NPs/TiH/纳米槽 Ti 催化剂是其中最好的一种。它具有非常低的起始电位(相对于 RHE 为-22 mV)、高交换电流密度(0.7 mA cm)和 113 mV dec 的 Tafel 斜率,表现出快速的 HER 动力学。这些 HER 电化学动力学参数与商用 Pt/C 催化剂在此处测量的参数非常接近(起始电位:-20 mV,Tafel 斜率:110 mV dec,交换电流密度:0.75 mA cm)。这些材料的高催化活性归因于 TiH 相和自支撑 Au NPs 的催化影响(水催化还原为 H 的活性位点),以及它们的纳米结构特征,为 HER 提供了大表面积。