School of Chemistry, University of Manchester , Oxford Road, Manchester, M13 9PL, United Kingdom.
Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences , Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia.
J Am Chem Soc. 2017 Sep 27;139(38):13349-13360. doi: 10.1021/jacs.7b05453. Epub 2017 Sep 19.
Natural gas (methane, CH) is widely considered as a promising energy carrier for mobile applications. Maximizing the storage capacity is the primary goal for the design of future storage media. Here we report the CH storage properties in a family of isostructural (3,24)-connected porous materials, MFM-112a, MFM-115a, and MFM-132a, with different linker backbone functionalization. Both MFM-112a and MFM-115a show excellent CH uptakes of 236 and 256 cm (STP) cm (v/v) at 80 bar and room temperature, respectively. Significantly, MFM-115a displays an exceptionally high deliverable CH capacity of 208 v/v between 5 and 80 bar at room temperature, making it among the best performing metal-organic frameworks for CH storage. We also synthesized the partially deuterated versions of the above materials and applied solid-state H NMR spectroscopy to show that these three frameworks contain molecular rotors that exhibit motion in fast, medium, and slow regimes, respectively. In situ neutron powder diffraction studies on the binding sites for CD within MFM-132a and MFM-115a reveal that the primary binding site is located within the small pocket enclosed by the [(Cu)(isophthalate)] window and three anthracene/phenyl panels. The open Cu(II) sites are the secondary/tertiary adsorption sites in these structures. Thus, we obtained direct experimental evidence showing that a tight cavity can generate a stronger binding affinity to gas molecules than open metal sites. Solid-state H NMR spectroscopy and neutron diffraction studies reveal that it is the combination of optimal molecular dynamics, pore geometry and size, and favorable binding sites that leads to the exceptional and different methane uptakes in these materials.
天然气(甲烷,CH)被广泛认为是移动应用中很有前途的能源载体。最大限度地提高存储容量是设计未来存储介质的主要目标。在这里,我们报告了在一组具有不同连接体骨架官能化的同构(3,24)连接多孔材料 MFM-112a、MFM-115a 和 MFM-132a 中 CH 的存储性能。MFM-112a 和 MFM-115a 分别在 80 巴和室温下表现出优异的 CH 吸收量,分别为 236 和 256 cm(STP)cm(v/v)。值得注意的是,MFM-115a 在室温下在 5 至 80 巴之间显示出异常高的可输送 CH 容量 208 v/v,使其成为用于 CH 存储的性能最佳的金属有机骨架之一。我们还合成了上述材料的部分氘代版本,并应用固态 H NMR 光谱表明这三个框架包含分子转子,它们分别表现出快速、中速和慢速运动。对 MFM-132a 和 MFM-115a 中 CD 的结合位点进行原位中子粉末衍射研究表明,主要结合位点位于由[(Cu)(间苯二甲酸)]窗口和三个蒽/苯基嵌段包围的小口袋内。开放的 Cu(II)位是这些结构中的二级/三级吸附位。因此,我们获得了直接的实验证据,表明紧密的空腔可以比开放的金属位对气体分子产生更强的结合亲和力。固态 H NMR 光谱和中子衍射研究表明,正是优化的分子动力学、孔几何形状和尺寸以及有利的结合位共同导致了这些材料中甲烷吸收量的异常和不同。