Suppr超能文献

复杂相钢和双相钢在边缘拉伸过程中的损伤演变

Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.

作者信息

Pathak Nikky, Butcher Cliff, Worswick Michael James, Bellhouse Erika, Gao Jeff

机构信息

Department of Mechanical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Research and Development, ArcelorMittal Dofasco, Hamilton, ON L8H 3N8, Canada.

出版信息

Materials (Basel). 2017 Mar 27;10(4):346. doi: 10.3390/ma10040346.

Abstract

The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.

摘要

采用孔拉伸试验评估了微观结构损伤在控制复相(CP)钢和双相(DP)钢边缘拉伸性能方面的作用。试验采用了在试样中心带有孔的拉伸试样,该孔要么是剪切而成(剪切边缘条件),要么是钻孔后再铰孔而成(铰孔边缘条件)。通过使用扫描电子显微镜(SEM)分析和光学显微镜在不同应变水平中断孔拉伸试验,系统地表征了CP钢和DP钢中的损伤机制及损伤累积情况。马氏体开裂和铁素体 - 马氏体界面的脱粘是DP780钢中的主要形核机制。CP800钢中空洞形核的主要来源是TiN颗粒处的形核,在接近失效应变时,马氏体/贝氏体界面处会形成次生空洞。与铰孔边缘相比,剪切边缘的损伤演化速率要高得多,因为剪切过程通过在剪切影响区(SAZ)引入加工硬化和初始损伤,改变了剪切边缘后方的微观结构。结果表明,CP钢的微观结构比DP钢材料更不易发生剪切诱导损伤,从而具有更高的剪切边缘成形性。对CP钢和DP钢中的微观结构损伤进行了表征,以了解边缘拉伸过程中微观结构、损伤演化和边缘成形性之间的相互作用。开发了一个空洞演化和聚结的分析模型,并将其应用于预测这些差异较大的微观结构中的损伤速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f204/5506944/b141cad1ca83/materials-10-00346-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验