Butera Valeria, Toroker Maytal Caspary
Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
Materials (Basel). 2017 Apr 29;10(5):480. doi: 10.3390/ma10050480.
Due to the high oxygen evolution reaction (OER) activity, stability, and abundance of NiOx materials, they are found to be promising catalysts, competitive with expensive metal oxides such as IrO₂ and RuO₂. From a theoretical point of view, studies reported in the literature so far are mostly based on density functional theory using periodic slab models for the bulk and surface of β-NiOOH, one of the active NiOx phases. However, cluster models are a valid method to investigate many aspects about structure, charge carrier transport properties, and OER activity of β-NiOOH. Hence, here we present new cluster models for the surface of β-NiOOH, where the oxygen atoms are bonded to Mg effective core potentials (ECPs) mimicking neighboring atom cores. This cluster embedding procedure is superior to saturating the cluster with hydrogen atoms, and to using other atomic ECPs for β-NiOOH. We find that layered materials such as β-NiOOH are more vulnerable to geometrical rupture and therefore a cluster approach requires additional care in choosing the embedding approach. We evaluated the models by using them to calculate the energy required for water adsorption and deprotonation, which are essential ingredients for OER. Specifically, our results agree with previous slab models that the first deprotonation reaction step requires a large amount of energy. In addition, we find that water and hydroxyl groups have high adsorption energy and therefore the first deprotonation step is limiting the reaction efficiency.
由于NiOx材料具有较高的析氧反应(OER)活性、稳定性且储量丰富,它们被认为是很有前景的催化剂,可与IrO₂和RuO₂等昂贵的金属氧化物相竞争。从理论角度来看,目前文献中报道的研究大多基于密度泛函理论,使用周期性平板模型来研究活性NiOx相之一的β-NiOOH的体相和表面。然而,团簇模型是研究β-NiOOH的结构、电荷载流子传输性质和OER活性等诸多方面的有效方法。因此,在此我们提出了β-NiOOH表面的新团簇模型,其中氧原子与模拟相邻原子核的Mg有效核势(ECP)相连。这种团簇嵌入方法优于用氢原子使团簇饱和以及对β-NiOOH使用其他原子ECP的方法。我们发现像β-NiOOH这样的层状材料更容易受到几何断裂的影响,因此在选择嵌入方法时,团簇方法需要格外小心。我们通过使用这些模型计算水吸附和去质子化所需的能量来评估模型,而水吸附和去质子化是OER的关键要素。具体而言,我们的结果与之前的平板模型一致,即第一次去质子化反应步骤需要大量能量。此外,我们发现水和羟基具有较高的吸附能,因此第一次去质子化步骤限制了反应效率。