Suppr超能文献

用于可充电锂电池的淀粉基孔结构优化碳纳米管-碳纳米纤维

Pore-Structure-Optimized CNT-Carbon Nanofibers from Starch for Rechargeable Lithium Batteries.

作者信息

Jeong Yongjin, Lee Kyuhong, Kim Kinam, Kim Sunghwan

机构信息

Research Reactor Fuel Development Division, Korea Atomic Energy Research Institute, Daejeon 305-353, Korea.

出版信息

Materials (Basel). 2016 Dec 8;9(12):995. doi: 10.3390/ma9120995.

Abstract

Porous carbon materials are used for many electrochemical applications due to their outstanding properties. However, research on controlling the pore structure and analyzing the carbon structures is still necessary to achieve enhanced electrochemical properties. In this study, mesoporous carbon nanotube (CNT)-carbon nanofiber electrodes were developed by heat-treatment of electrospun starch with carbon nanotubes, and then applied as a binder-free electrochemical electrode for a lithium-ion battery. Using the unique lamellar structure of starch, mesoporous CNT-carbon nanofibers were prepared and their pore structures were controlled by manipulating the heat-treatment conditions. The activation process greatly increased the volume of micropores and mesopores of carbon nanofibers by etching carbons with CO₂ gas, and the Brunauer-Emmett-Teller (BET) specific area increased to about 982.4 m²·g. The activated CNT-carbon nanofibers exhibited a high specific capacity (743 mAh·g) and good cycle performance (510 mAh·g after 30 cycles) due to their larger specific surface area. This condition presents many adsorption sites of lithium ions, and higher electrical conductivity, compared with carbon nanofibers without CNT. The research suggests that by controlling the heat-treatment conditions and activation process, the pore structure of the carbon nanofibers made from starch could be tuned to provide the conditions needed for various applications.

摘要

多孔碳材料因其优异的性能而被用于许多电化学应用中。然而,为了实现增强的电化学性能,对控制孔结构和分析碳结构的研究仍然是必要的。在本研究中,通过对含有碳纳米管的静电纺丝淀粉进行热处理,制备了介孔碳纳米管(CNT)-碳纳米纤维电极,然后将其用作锂离子电池的无粘结剂电化学电极。利用淀粉独特的层状结构,制备了介孔CNT-碳纳米纤维,并通过控制热处理条件来调控其孔结构。活化过程通过用CO₂气体蚀刻碳,极大地增加了碳纳米纤维的微孔和介孔体积,布鲁诺尔-埃米特-泰勒(BET)比表面积增加到约982.4 m²·g。由于具有更大的比表面积,活化后的CNT-碳纳米纤维表现出高比容量(743 mAh·g)和良好的循环性能(30次循环后为510 mAh·g)。与不含CNT的碳纳米纤维相比,这种情况提供了许多锂离子吸附位点,并且具有更高的电导率。该研究表明,通过控制热处理条件和活化过程,可以调整由淀粉制成的碳纳米纤维的孔结构,以提供各种应用所需的条件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe3/5457023/4bc705e70bdd/materials-09-00995-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验