Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
Dept. of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
Biochim Biophys Acta Gen Subj. 2017 Nov;1861(11 Pt A):2789-2801. doi: 10.1016/j.bbagen.2017.07.024. Epub 2017 Aug 1.
The affinities of DNA binding proteins for target sites can be used to model the regulation of gene expression. These proteins can bind to DNA cooperatively, strongly impacting their affinity and specificity. However, current methods for measuring cooperativity do not provide the means to accurately predict binding behavior over a wide range of concentrations.
We use standard computational and mathematical methods, and develop novel methods as described in Results.
We explore some complexities of cooperative binding, and develop an improved method for relating in vitro measurements to in vivo function, based on ternary complex formation. We derive expressions for the equilibria among the various complexes, and explore the limitations of binding experiments that model the system using a single parameter. We describe how to use single-ligand binding and ternary complex formation in tandem to determine parameters that have thermodynamic relevance. We develop an improved method for finding both single-ligand dissociation constants and concentrations simultaneously. We show how the cooperativity factor can be found when only one of the single-ligand dissociation constants can be measured.
The methods that we develop constitute an optimized approach to accurately model cooperative binding.
The expressions and methods we develop for modeling and analyzing DNA binding and cooperativity are applicable to most cases where multiple ligands bind to distinct sites on a common substrate. The parameters determined using these methods can be fed into models of higher-order cooperativity to increase their predictive power.
DNA 结合蛋白与靶位的亲和力可用于模拟基因表达的调控。这些蛋白质可以协同结合 DNA,强烈影响其亲和力和特异性。然而,目前用于测量协同性的方法无法提供在广泛浓度范围内准确预测结合行为的手段。
我们使用标准的计算和数学方法,并根据结果中所述开发新方法。
我们探讨了协同结合的一些复杂性,并开发了一种基于三元复合物形成的将体外测量与体内功能相关联的改进方法。我们推导出了各种复合物之间平衡的表达式,并探讨了使用单个参数对系统进行建模的结合实验的局限性。我们描述了如何串联使用单配体结合和三元复合物形成来确定具有热力学相关性的参数。我们开发了一种同时确定单配体解离常数和浓度的改进方法。我们展示了当只能测量一个单配体解离常数时如何找到协同因子。
我们开发的方法构成了准确模拟协同结合的优化方法。
我们为 DNA 结合和协同性建模和分析开发的表达式和方法适用于大多数情况下,其中多个配体结合到共同底物上的不同位点。使用这些方法确定的参数可以输入到更高阶协同性模型中以提高其预测能力。