Author to whom any correspondence should be addressed.
Bioinspir Biomim. 2017 Oct 16;12(6):065003. doi: 10.1088/1748-3190/aa8448.
Inspired by the morphology characteristics of the earthworms and the excellent deformability of origami structures, this research creates a novel earthworm-like locomotion robot through exploiting the origami techniques. In this innovation, appropriate actuation mechanisms are incorporated with origami ball structures into the earthworm-like robot 'body', and the earthworm's locomotion mechanism is mimicked to develop a gait generator as the robot 'centralized controller'. The origami ball, which is a periodic repetition of waterbomb units, could output significant bidirectional (axial and radial) deformations in an antagonistic way similar to the earthworm's body segment. Such bidirectional deformability can be strategically programmed by designing the number of constituent units. Experiments also indicate that the origami ball possesses two outstanding mechanical properties that are beneficial to robot development: one is the structural multistability in the axil direction that could contribute to the robot control implementation; and the other is the structural compliance in the radial direction that would increase the robot robustness and applicability. To validate the origami-based innovation, this research designs and constructs three robot segments based on different axial actuators: DC-motor, shape-memory-alloy springs, and pneumatic balloon. Performance evaluations reveal their merits and limitations, and to prove the concept, the DC-motor actuation is selected for building a six-segment robot prototype. Learning from earthworms' fundamental locomotion mechanism-retrograde peristalsis wave, seven gaits are automatically generated; controlled by which, the robot could achieve effective locomotion with qualitatively different modes and a wide range of average speeds. The outcomes of this research could lead to the development of origami locomotion robots with low fabrication costs, high customizability, light weight, good scalability, and excellent re-configurability.
受蚯蚓形态特征和折纸结构优异的可变形性的启发,本研究通过利用折纸技术开发了一种新型的蚯蚓样运动机器人。在这项创新中,适当的致动机制与折纸球结构一起被纳入到蚯蚓样机器人的“身体”中,并模仿蚯蚓的运动机制来开发步态发生器作为机器人的“集中控制器”。折纸球是水炸弹单元的周期性重复,它可以以类似于蚯蚓身体节段的拮抗方式输出显著的双向(轴向和径向)变形。这种双向可变形性可以通过设计组成单元的数量来进行策略性编程。实验还表明,折纸球具有两个有利于机器人发展的杰出机械性能:一个是在轴向的结构多稳定性,这有助于机器人的控制实现;另一个是在径向的结构柔顺性,这将提高机器人的鲁棒性和适用性。为了验证基于折纸的创新,本研究基于不同的轴向致动器设计和构建了三个机器人节段:直流电机、形状记忆合金弹簧和气动气球。性能评估揭示了它们的优点和局限性,为了证明这一概念,选择直流电机致动来构建一个六节段机器人原型。从蚯蚓基本运动机制——逆行蠕动波中学习,自动生成了七种步态;通过控制这些步态,机器人可以以不同的模式和广泛的平均速度实现有效的运动。本研究的结果可以导致开发出具有低成本、高可定制性、重量轻、良好的可扩展性和出色的可重构性的折纸运动机器人。
Bioinspir Biomim. 2017-10-16
Front Robot AI. 2021-8-20
Bioinspir Biomim. 2020-7-29
Bioinspir Biomim. 2019-8-16
Bioinspir Biomim. 2019-2-15
Bioinspir Biomim. 2015-10-29
J Med Eng Technol. 2005
Adv Sci (Weinh). 2023-5
Sci Adv. 2025-8
Biomimetics (Basel). 2024-12-11
Commun Eng. 2024-10-30
Biomimetics (Basel). 2024-10-4
Biomimetics (Basel). 2024-9-6
Micromachines (Basel). 2023-4-6