Dayam Roya M, Sun Chun X, Choy Christopher H, Mancuso Gemma, Glogauer Michael, Botelho Roberto J
Department of Chemistry and Biology, Ryerson University, Toronto, Ontario M5B 2K3, Canada.
Molecular Science Graduate Program, Ryerson University, Toronto, Ontario M5B 2K3, Canada; and.
J Immunol. 2017 Sep 15;199(6):2096-2105. doi: 10.4049/jimmunol.1601466. Epub 2017 Aug 4.
Neutrophils rapidly arrive at an infection site because of their unparalleled chemotactic ability, after which they unleash numerous attacks on pathogens through degranulation and reactive oxygen species (ROS) production, as well as by phagocytosis, which sequesters pathogens within phagosomes. Phagosomes then fuse with lysosomes and granules to kill the enclosed pathogens. A complex signaling network composed of kinases, GTPases, and lipids, such as phosphoinositides, helps to coordinate all of these processes. There are seven species of phosphoinositides that are interconverted by lipid kinases and phosphatases. PIKfyve is a lipid kinase that generates phosphatidylinositol-3,5-bisphosphate and, directly or indirectly, phosphatidylinositol-5-phosphate [PtdIns(5)P]. PIKfyve inactivation causes massive lysosome swelling, disrupts membrane recycling, and, in macrophages, blocks phagosome maturation. In this study, we explored for the first time, to our knowledge, the role of PIKfyve in human and mouse neutrophils. We show that PIKfyve inhibition in neutrophils does not affect granule morphology or degranulation, but it causes LAMP1 lysosomes to engorge. Additionally, PIKfyve inactivation blocks phagosome-lysosome fusion in a manner that can be rescued, in part, with Ca ionophores or agonists of TRPML1, a lysosomal Ca channel. Strikingly, PIKfyve is necessary for chemotaxis, ROS production, and stimulation of the Rac GTPases, which control chemotaxis and ROS. This is consistent with observations in nonleukocytes that showed that PIKfyve and PtdIns(5)P control Rac and cell migration. Overall, we demonstrate that PIKfyve has a robust role in neutrophils and propose a model in which PIKfyve modulates phagosome maturation through phosphatidylinositol-3,5-bisphosphate-dependent activation of TRPML1, whereas chemotaxis and ROS are regulated by PtdIns(5)P-dependent activation of Rac.
由于具有无与伦比的趋化能力,中性粒细胞能迅速抵达感染部位。到达后,它们通过脱颗粒、产生活性氧(ROS)以及吞噬作用对病原体发动多次攻击,吞噬作用将病原体隔离在吞噬小体中。随后,吞噬小体与溶酶体和颗粒融合以杀死被包围的病原体。由激酶、GTP酶和脂质(如磷酸肌醇)组成的复杂信号网络有助于协调所有这些过程。有七种磷酸肌醇可通过脂质激酶和磷酸酶相互转化。PIKfyve是一种脂质激酶,可生成磷脂酰肌醇-3,5-二磷酸,并直接或间接生成磷脂酰肌醇-5-磷酸[PtdIns(5)P]。PIKfyve失活会导致大量溶酶体肿胀,破坏膜循环,并且在巨噬细胞中会阻断吞噬小体成熟。在本研究中,据我们所知,我们首次探索了PIKfyve在人和小鼠中性粒细胞中的作用。我们发现,抑制中性粒细胞中的PIKfyve不会影响颗粒形态或脱颗粒,但会导致溶酶体相关膜蛋白1(LAMP1)溶酶体肿胀。此外,PIKfyve失活会以一种可部分通过钙离子载体或溶酶体钙通道TRPML1的激动剂挽救的方式阻断吞噬小体-溶酶体融合。引人注目的是,PIKfyve对于趋化作用、ROS产生以及对控制趋化作用和ROS的Rac GTP酶的刺激是必需的。这与在非白细胞中的观察结果一致,即PIKfyve和PtdIns(5)P控制Rac和细胞迁移。总体而言,我们证明PIKfyve在中性粒细胞中具有重要作用,并提出了一个模型,其中PIKfyve通过依赖磷脂酰肌醇-3,5-二磷酸激活TRPML1来调节吞噬小体成熟,而趋化作用和ROS则由依赖PtdIns(5)P激活Rac来调节。