Suppr超能文献

谷氨酸能神经元中神经纤层蛋白缺失损害选择性脑功能和钙调节:认知功能恶化的影响。

Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration.

机构信息

Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany.

Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.

出版信息

Sci Rep. 2017 Aug 4;7(1):7273. doi: 10.1038/s41598-017-07839-9.

Abstract

The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca ATPases (PMCAs), an essential regulator of the intracellular Ca concentration ([iCa]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn mice and increased [iCa] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.

摘要

神经细胞黏附分子神经钙黏蛋白(Np)是影响人类智力的一个新的候选因子。Np 缺陷型小鼠表现出复杂的认知缺陷和血浆膜 Ca ATP 酶(PMCAs)水平降低,后者是细胞内 Ca 浓度([iCa])和神经元活动的重要调节剂。我们在人类海马-皮质通路的谷氨酸能神经元中显示出丰富的 Np 表达,并具有与啮齿动物大脑相似的保守细胞和分子特征。在 Nptn 小鼠中,谷氨酸能神经元选择性的 Np 缺失导致行为缺陷,表明海马、纹状体和感觉运动功能障碍,同时伴有海马 CA1 区、感觉运动皮层 I-III/IV 层和纹状体感觉运动区的高度异常活动,这些活动通过单光子发射计算机断层扫描检测到。海马和皮质活动的改变与 Nptn 小鼠中特定 PMCA 同系物的减少以及培养的突变神经元中 [iCa] 的增加相关。人和啮齿动物的 Np 增强了转染细胞质膜中 PMCA 同系物的转录后表达,并与 PMCA 同系物共定位。我们的结果表明 Np 是谷氨酸能神经元中 PMCA 表达所必需的,允许适当的 [iCa] 调节和正常的回路活动。神经元类型特异性的 Np 缺失能够增强对与电路编码的学习和记忆相关的回路的研究,并识别导致认知恶化的因果机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b778/5544750/cbb6f4625efa/41598_2017_7839_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验