Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Naka 2-24-16, Koganei, Tokyo, 184-8588, Japan.
Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), Onogawa 16-1, Tsukuba, Ibaraki, 305-8569, Japan.
Water Res. 2017 Nov 1;124:363-371. doi: 10.1016/j.watres.2017.07.058. Epub 2017 Jul 24.
The goal of this study was to investigate the effectiveness of a membrane-aerated biofilm reactor (MABR), a representative of counter-current substrate diffusion geometry, in mitigating nitrous oxide (NO) emission. Two laboratory-scale reactors with the same dimensions but distinct biofilm geometries, i.e., a MABR and a conventional biofilm reactor (CBR) employing co-current substrate diffusion geometry, were operated to determine depth profiles of dissolved oxygen (DO), nitrous oxide (NO), functional gene abundance and microbial community structure. Surficial nitrogen removal rate was slightly higher in the MABR (11.0 ± 0.80 g-N/(m day) than in the CBR (9.71 ± 0.94 g-N/(m day), while total organic carbon removal efficiencies were comparable (96.9 ± 1.0% for MABR and 98.0 ± 0.8% for CBR). In stark contrast, the dissolved NO concentration in the MABR was two orders of magnitude lower (0.011 ± 0.001 mg NO-N/L) than that in the CBR (1.38 ± 0.25 mg NO-N/L), resulting in distinct NO emission factors (0.0058 ± 0.0005% in the MABR vs. 0.72 ± 0.13% in the CBR). Analysis on local net NO production and consumption rates unveiled that zones for NO production and consumption were adjacent in the MABR biofilm. Real-time quantitative PCR indicated higher abundance of denitrifying genes, especially nitrous oxide reductase (nosZ) genes, in the MABR versus the CBR. Analyses of the microbial community composition via 16S rRNA gene amplicon sequencing revealed the abundant presence of the genera Thauera (31.2 ± 11%), Rhizobium (10.9 ± 6.6%), Stenotrophomonas (6.8 ± 2.7%), Sphingobacteria (3.2 ± 1.1%) and Brevundimonas (2.5 ± 1.0%) as potential NO-reducing bacteria in the MABR.
本研究旨在探讨一种膜曝气生物膜反应器(MABR)的效果,MABR 是反硝化扩散几何的代表,可减少氧化亚氮(NO)的排放。使用两种具有相同尺寸但生物膜几何形状不同的实验室规模的反应器,即采用同向基质扩散几何的 MABR 和传统生物膜反应器(CBR),来确定溶解氧(DO)、氧化亚氮(NO)、功能基因丰度和微生物群落结构的深度分布。MABR 的表面氮去除速率略高于 CBR(11.0 ± 0.80 g-N/(m·天)比 CBR(9.71 ± 0.94 g-N/(m·天),而总有机碳去除效率相当(MABR 为 96.9 ± 1.0%,CBR 为 98.0 ± 0.8%)。相比之下,MABR 中的溶解 NO 浓度低两个数量级(0.011 ± 0.001 mg NO-N/L)比 CBR(1.38 ± 0.25 mg NO-N/L),导致不同的 NO 排放因子(MABR 为 0.0058 ± 0.0005%,CBR 为 0.72 ± 0.13%)。对局部净 NO 产生和消耗速率的分析表明,MABR 生物膜中 NO 产生和消耗区相邻。实时定量 PCR 表明,MABR 中反硝化基因,尤其是氧化亚氮还原酶(nosZ)基因的丰度高于 CBR。通过 16S rRNA 基因扩增子测序对微生物群落组成的分析表明,MABR 中存在丰富的 Thauera(31.2 ± 11%)、Rhizobium(10.9 ± 6.6%)、Stenotrophomonas(6.8 ± 2.7%)、Sphingobacteria(3.2 ± 1.1%)和 Brevundimonas(2.5 ± 1.0%)等潜在的 NO 还原菌。