Suppr超能文献

RB1转录本的剪接缺陷是视网膜母细胞瘤的主要病因。

Defective splicing of the RB1 transcript is the dominant cause of retinoblastomas.

作者信息

Cygan Kamil J, Soemedi Rachel, Rhine Christy L, Profeta Abraham, Murphy Eileen L, Murray Michael F, Fairbrother William G

机构信息

Center for Computational Molecular Biology, Brown University, Providence, RI, USA.

Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.

出版信息

Hum Genet. 2017 Sep;136(9):1303-1312. doi: 10.1007/s00439-017-1833-4. Epub 2017 Aug 5.

Abstract

Defective splicing is a common cause of genetic diseases. On average, 13.4% of all hereditary disease alleles are classified as splicing mutations with most mapping to the critical GT or AG nucleotides within the 5' and 3' splice sites. However, splicing mutations are underreported and the fraction of splicing mutations that compose all disease alleles varies greatly across disease gene. For example, there is a great excess (46%; ~threefold) of hereditary disease alleles that map to splice sites in RB1 that cause retinoblastoma. Furthermore, mutations in the exons and deeper intronic position may also affect splicing. We recently developed a high-throughput method that assays reported disease mutations for their ability to disrupt pre-mRNA splicing. Surprisingly, 27% of RB1-coding mutations tested also disrupt splicing. High-throughput in vitro spliceosomal assembly assay reveals heterogeneity in which stage of spliceosomal assembly is affected by splicing mutations. 58% of exonic splicing mutations were primarily blocked at the A complex in transition to the B complex and 33% were blocked at the B complex. Several mutants appear to reduce more than one step in the assembly. As RB1 splicing mutants are enriched in retinoblastoma disease alleles, additional priority should be allocated to this class of allele while interpreting clinical sequencing experiments. Analysis of the spectrum of RB1 variants observed in 60,706 exomes identifies 197 variants that have enough potential to disrupt splicing to warrant further consideration.

摘要

剪接缺陷是遗传疾病的常见病因。平均而言,所有遗传性疾病等位基因中有13.4%被归类为剪接突变,其中大多数定位于5'和3'剪接位点内的关键GT或AG核苷酸。然而,剪接突变的报告不足,并且构成所有疾病等位基因的剪接突变比例在不同疾病基因中差异很大。例如,RB1基因中定位于剪接位点的遗传性疾病等位基因大量过剩(46%;约三倍),这些等位基因会导致视网膜母细胞瘤。此外,外显子和内含子更深位置的突变也可能影响剪接。我们最近开发了一种高通量方法,用于检测已报道的疾病突变破坏前体mRNA剪接的能力。令人惊讶的是,所检测的RB1编码突变中有27%也会破坏剪接。高通量体外剪接体组装分析揭示了剪接突变影响剪接体组装的哪个阶段存在异质性。58%的外显子剪接突变主要在向B复合物转变的A复合物阶段受阻,33%在B复合物阶段受阻。一些突变体似乎在组装过程中阻碍了不止一个步骤。由于RB1剪接突变体在视网膜母细胞瘤疾病等位基因中富集,在解释临床测序实验时应给予这类等位基因更多的优先级。对60706个外显子组中观察到的RB1变异谱进行分析,确定了197个具有足够潜力破坏剪接从而值得进一步考虑的变异。

相似文献

1
Defective splicing of the RB1 transcript is the dominant cause of retinoblastomas.
Hum Genet. 2017 Sep;136(9):1303-1312. doi: 10.1007/s00439-017-1833-4. Epub 2017 Aug 5.
2
germline mutation spectrum and clinical features in patients with unilateral retinoblastomas.
Ophthalmic Genet. 2021 Oct;42(5):593-599. doi: 10.1080/13816810.2021.1946703. Epub 2021 Jun 30.
3
An overview of transcript alterations detected during retinoblastoma genetic screening.
Ophthalmic Genet. 2024 Jun;45(3):235-245. doi: 10.1080/13816810.2023.2270570. Epub 2023 Nov 6.
4
Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma.
Cancer Med. 2017 Mar;6(3):619-630. doi: 10.1002/cam4.1010. Epub 2017 Feb 17.
5
Generation and characterization of three CRISPR/Cas9 edited RB1 null hiPSC lines for retinoblastoma disease modelling.
Stem Cell Res. 2024 Apr;76:103373. doi: 10.1016/j.scr.2024.103373. Epub 2024 Mar 2.
6
RB1 gene mutations and genetic spectrum in retinoblastoma cases.
Medicine (Baltimore). 2023 Sep 8;102(36):e35068. doi: 10.1097/MD.0000000000035068.
7
Molecular alterations in retinoblastoma beyond RB1.
Exp Eye Res. 2021 Oct;211:108753. doi: 10.1016/j.exer.2021.108753. Epub 2021 Aug 31.
8
Characterization of human-induced pluripotent stem cells carrying homozygous RB1 gene deletion.
Genes Cells. 2020 Jul;25(7):510-517. doi: 10.1111/gtc.12771. Epub 2020 Apr 28.
9
A splicing mutation in RB1 in low penetrance retinoblastoma.
Hum Genet. 1997 Oct;100(5-6):557-63. doi: 10.1007/s004390050551.
10
A deep intronic mutation in the RB1 gene leads to intronic sequence exonisation.
Eur J Hum Genet. 2007 Apr;15(4):473-7. doi: 10.1038/sj.ejhg.5201787. Epub 2007 Feb 14.

引用本文的文献

1
Case Report: A novel germline donor splicing site mutation of gene in a Chinese Tibetan pedigree with familial retinoblastoma.
Front Oncol. 2025 May 20;15:1525035. doi: 10.3389/fonc.2025.1525035. eCollection 2025.
2
Analysing Differential Alternative Splicing Events and Their Impact on Retinoblastoma Progression Using RNA-seq Metadata.
Asian Pac J Cancer Prev. 2025 May 1;26(5):1781-1792. doi: 10.31557/APJCP.2025.26.5.1781.
3
The role of alternative pre-mRNA splicing in cancer progression.
Cancer Cell Int. 2023 Oct 24;23(1):249. doi: 10.1186/s12935-023-03094-3.
4
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer.
Cancers (Basel). 2022 Dec 2;14(23):5967. doi: 10.3390/cancers14235967.
5
Genetic Predisposition to Solid Pediatric Cancers.
Front Oncol. 2020 Oct 28;10:590033. doi: 10.3389/fonc.2020.590033. eCollection 2020.
6
Knockdown of long noncoding RNA 00152 (LINC00152) inhibits human retinoblastoma progression.
Onco Targets Ther. 2018 Jun 6;11:3215-3223. doi: 10.2147/OTT.S160428. eCollection 2018.
7
RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development.
Front Genet. 2018 May 17;9:170. doi: 10.3389/fgene.2018.00170. eCollection 2018.

本文引用的文献

1
Pathogenic variants that alter protein code often disrupt splicing.
Nat Genet. 2017 Jun;49(6):848-855. doi: 10.1038/ng.3837. Epub 2017 Apr 17.
2
Analysis of protein-coding genetic variation in 60,706 humans.
Nature. 2016 Aug 18;536(7616):285-91. doi: 10.1038/nature19057.
3
A global reference for human genetic variation.
Nature. 2015 Oct 1;526(7571):68-74. doi: 10.1038/nature15393.
4
RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.
Science. 2015 Jan 9;347(6218):1254806. doi: 10.1126/science.1254806. Epub 2014 Dec 18.
5
Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery.
Mol Cell. 2015 Jan 8;57(1):7-22. doi: 10.1016/j.molcel.2014.10.030. Epub 2014 Dec 4.
6
Quantifying single nucleotide variant detection sensitivity in exome sequencing.
BMC Bioinformatics. 2013 Jun 18;14:195. doi: 10.1186/1471-2105-14-195.
7
Large-scale mapping of branchpoints in human pre-mRNA transcripts in vivo.
Nat Struct Mol Biol. 2012 Jun 17;19(7):719-21. doi: 10.1038/nsmb.2327.
8
Spliceman--a computational web server that predicts sequence variations in pre-mRNA splicing.
Bioinformatics. 2012 Apr 1;28(7):1031-2. doi: 10.1093/bioinformatics/bts074. Epub 2012 Feb 10.
9
RB1 mutations and second primary malignancies after hereditary retinoblastoma.
Fam Cancer. 2012 Jun;11(2):225-33. doi: 10.1007/s10689-011-9505-3.
10
Quantitative evaluation of all hexamers as exonic splicing elements.
Genome Res. 2011 Aug;21(8):1360-74. doi: 10.1101/gr.119628.110. Epub 2011 Jun 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验