Donaldson Clare, Caudron Corentin, Green Robert G, Thelen Weston A, White Robert S
Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Road, Cambridge CB3 0EZ, UK.
U.S. Geological Survey, Cascades Volcano Observatory, Vancouver, WA 98661, USA.
Sci Adv. 2017 Jun 28;3(6):e1700219. doi: 10.1126/sciadv.1700219. eCollection 2017 Jun.
Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression-hence closing cracks and producing faster velocities-and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool.
地震噪声干涉测量法能够对火山结构体的相对地震速度进行连续实时测量。由于地震速度对系统的增压状态敏感,该方法成为活火山监测领域一种令人兴奋的新型工具。尽管该工具潜力巨大,但尚未有研究在较长时间内,在短期时间尺度上,将速度与火山上的其他地球物理观测数据进行全面比较。我们利用基拉韦厄火山的火山颤动(约0.3至1.0赫兹)作为干涉测量的被动源,来测量相对速度随时间的变化。通过对约230个台站对之间长达一天的地震记录的垂直分量进行互相关,我们提取出了相干且时间上一致的尾波信号,时间滞后长达120秒。我们得到的相对速度时间序列显示,相对速度与在基拉韦厄火山山顶测量的径向倾斜记录之间存在显著相关性,在几乎整个研究期间(2011年6月至2015年11月),在数天到数周的时间尺度上始终保持相关。随着山顶在泄气 - 充气事件中持续变形,速度分别降低和增加。基拉韦厄火山的应变模型表明,在浅层岩浆库(地表以下1至2千米)充气期间,结构体的大部分区域受压缩主导,从而使裂缝闭合并产生更快的速度,反之亦然。本研究中相对速度与变形之间的良好相关性为更好地理解火山地震速度变化的机制提供了契机,进而实现了被动干涉测量作为监测工具的潜力。