Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Canada.
Sci Rep. 2017 Aug 7;7(1):7468. doi: 10.1038/s41598-017-06983-6.
We present a novel, non-invasive magnetic resonance imaging (MRI) technique to assess real-time dynamic vasomodulation of the microvascular bed. Unlike existing perfusion imaging techniques, our method is sensitive only to blood volume and not flow velocity. Using graded gas challenges and a long-life, blood-pool T -reducing agent gadofosveset, we can sensitively assess microvascular volume response in the liver, kidney cortex, and paraspinal muscle to vasoactive stimuli (i.e. hypercapnia, hypoxia, and hypercapnic hypoxia). Healthy adult rats were imaged on a 3 Tesla scanner and cycled through 10-minute gas intervals to elicit vasoconstriction followed by vasodilatation. Quantitative T relaxation time mapping was performed dynamically; heart rate and blood oxygen saturation were continuously monitored. Laser Doppler perfusion measurements confirmed MRI findings: dynamic changes in T corresponded with perfusion changes to graded gas challenges. Our new technique uncovered differential microvascular response to gas stimuli in different organs: for example, mild hypercapnia vasodilates the kidney cortex but constricts muscle vasculature. Finally, we present a gas challenge protocol that produces a consistent vasoactive response and can be used to assess vasomodulatory capacity. Our imaging approach to monitor real-time vasomodulation may be extended to other imaging modalities and is valuable for investigating diseases where microvascular health is compromised.
我们提出了一种新颖的、非侵入性的磁共振成像(MRI)技术,用于评估微血管床的实时动态血管调节。与现有的灌注成像技术不同,我们的方法仅对血容量敏感,而不对血流速度敏感。使用分级气体挑战和长寿命的血池 T 还原剂钆弗塞特,我们可以敏感地评估肝脏、肾皮质和脊柱旁肌肉对血管活性刺激(即高碳酸血症、缺氧和高碳酸缺氧)的微血管体积反应。健康成年大鼠在 3T 扫描仪上进行成像,并进行 10 分钟的气体间隔循环,以引发血管收缩,随后是血管扩张。定量 T 弛豫时间映射进行动态;心率和血氧饱和度连续监测。激光多普勒灌注测量证实了 MRI 发现:T 的动态变化与分级气体挑战的灌注变化相对应。我们的新技术揭示了不同器官对气体刺激的不同微血管反应:例如,轻度高碳酸血症舒张肾皮质,但收缩肌肉血管。最后,我们提出了一种气体挑战方案,该方案可产生一致的血管活性反应,并可用于评估血管调节能力。我们监测实时血管调节的成像方法可以扩展到其他成像模式,对于研究微血管健康受损的疾病非常有价值。