Suppr超能文献

染料敏化太阳能电池工作电极在 I/I 氧化还原电解质溶液下掩埋的染料 TiO 界面结构。

DyeTiO interfacial structure of dye-sensitised solar cell working electrodes buried under a solution of I/I redox electrolyte.

机构信息

Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.

出版信息

Nanoscale. 2017 Aug 17;9(32):11793-11805. doi: 10.1039/c7nr03936k.

Abstract

Dye-sensitised solar cells (DSCs) have niche prospects for electricity-generating windows that could equip buildings for energy-sustainable future cities. However, this 'smart window' technology is being held back by a lack of understanding in how the dye interacts with its device environment at the molecular level. A better appreciation of the dyeTiO interfacial structure of the DSC working electrodes would be particularly valuable since associated structure-function relationships could be established; these rules would provide a 'toolkit' for the molecular engineering of more suitable DSC dyes via rational design. Previous materials characterisation efforts have been limited to determining this interfacial structure within an environment exposed to air or situated in a solvent medium. This study is the first to reveal the structure of this buried interface within the functional device environment, and represents the first application of in situ neutron reflectometry to DSC research. By incorporating the electrolyte into the structural model of this buried interface, we reveal how lithium cations from the electrolyte constituents influence the dyeTiO binding configuration of an organic sensitiser, MK-44, via Li complexation to the cyanoacrylate group. This dye is the molecular congener of the high-performance MK-2 DSC dye, whose hexa-alkyl chains appear to stabilise it from Li complexation. Our in situ neutron reflectometry findings are built up from auxiliary structural models derived from ex situ X-ray reflectometry and corroborated via density functional theory and UV/vis absorption spectroscopy. Significant differences between the in situ and ex situ dyeTiO interfacial structures are found, highlighting the need to characterise the molecular structure of DSC working electrodes while in a fully assembled device.

摘要

染料敏化太阳能电池(DSC)在为能源可持续未来城市配备建筑物的发电窗户方面具有利基前景。然而,这种“智能窗户”技术的发展受到对染料在分子水平上与器件环境相互作用的理解不足的限制。更好地了解 DSC 工作电极的染料 TiO 界面结构将特别有价值,因为可以建立相关的结构-功能关系;这些规则将为通过合理设计对更合适的 DSC 染料进行分子工程提供一个“工具包”。以前的材料特性研究仅限于在暴露于空气的环境或处于溶剂介质中的环境中确定这种界面结构。本研究首次揭示了功能器件环境中这种埋藏界面的结构,这是首次将原位中子反射法应用于 DSC 研究。通过将电解质纳入这种埋藏界面的结构模型,我们揭示了电解质成分中的锂离子如何通过与氰基丙烯酸酯基团的配位来影响有机敏化剂 MK-44 的染料 TiO 结合构型。这种染料是高性能 MK-2 DSC 染料的分子同系物,其六烷基链似乎使其免受锂离子配位的影响。我们的原位中子反射法研究结果是从源自异位 X 射线反射法的辅助结构模型中建立起来的,并通过密度泛函理论和紫外/可见吸收光谱进行了验证。在原位和异位染料 TiO 界面结构之间发现了显著差异,突出了需要在完全组装的器件中对 DSC 工作电极的分子结构进行表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验