Schulz Margot, Sicker Dieter, Schackow Oliver, Hennig Lothar, Yurkov Andrey, Siebers Meike, Hofmann Diana, Disko Ulrich, Ganimede Cristina, Mondani Letizia, Tabaglio Vincenzo, Marocco Adriano
a IMBIO Institute of Molecular Physiology and Biotechnology of Plants , University of Bonn , Bonn , Germany.
b Institut für Organische Chemie , Universität Leipzig , Leipzig , Germany.
Plant Signal Behav. 2017 Aug 3;12(8):e1358843. doi: 10.1080/15592324.2017.1358843. Epub 2017 Aug 8.
A facultative, microbial micro-community colonizing roots of Abutilon theophrasti Medik. supports the plant in detoxifying hydroxylated benzoxazolinones. The root micro-community is composed of several fungi and bacteria with Actinomucor elegans as a dominant species. The yeast Papiliotrema baii and the bacterium Pantoea ananatis are actively involved in the detoxification of hydroxylated benzoxazolinones by generating HO. At the root surface, laccases, peroxidases and polyphenol oxidases cooperate for initiating polymerization reactions, whereby enzyme combinations seem to differ depending on the hydroxylation position of BOA-OHs. A glucosyltransferase, able to glucosylate the natural benzoxazolinone detoxification intermediates BOA-5- and BOA-6-OH, is thought to reduce oxidative overshoots by damping BOA-OH induced HO generation. Due to this detoxification network, growth of Abutilon theophrasti seedlings is not suppressed by BOA-OHs. Polymer coats have no negative influence. Alternatively, quickly degradable 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one can be produced by the micro-community member Pantoea ananatis at the root surfaces. The results indicate that Abutilon theophrasti has evolved an efficient strategy by recruiting soil microorganisms with special abilities for different detoxification reactions which are variable and may be triggered by the allelochemical´s structure and by environmental conditions.
一个定殖于苘麻(Abutilon theophrasti Medik.)根部的兼性微生物微群落帮助植物对羟基化苯并恶唑啉酮进行解毒。根部微群落由几种真菌和细菌组成,雅致放射毛霉(Actinomucor elegans)是优势物种。酵母巴氏蝶形酵母(Papiliotrema baii)和细菌菠萝泛菌(Pantoea ananatis)通过产生HO积极参与羟基化苯并恶唑啉酮的解毒过程。在根表面,漆酶、过氧化物酶和多酚氧化酶协同启动聚合反应,不同酶的组合似乎取决于BOA-OHs的羟基化位置。一种能够将天然苯并恶唑啉酮解毒中间体BOA-5-和BOA-6-OH糖基化的葡糖基转移酶,被认为通过抑制BOA-OH诱导的HO产生来减少氧化过冲。由于这个解毒网络,苘麻幼苗的生长不会受到BOA-OHs的抑制。聚合物涂层没有负面影响。此外,微群落成员菠萝泛菌可以在根表面产生可快速降解的6-羟基-5-硝基苯并[d]恶唑-2(3H)-酮。结果表明,苘麻通过招募具有特殊能力的土壤微生物来进行不同的解毒反应,形成了一种有效的策略,这些反应是可变的,可能由化感物质的结构和环境条件触发。