Suppr超能文献

苘麻与根部定殖微生物的种间合作消除了BOA-OH化感物质。

Interspecies-cooperations of abutilon theophrasti with root colonizing microorganisms disarm BOA-OH allelochemicals.

作者信息

Schulz Margot, Sicker Dieter, Schackow Oliver, Hennig Lothar, Yurkov Andrey, Siebers Meike, Hofmann Diana, Disko Ulrich, Ganimede Cristina, Mondani Letizia, Tabaglio Vincenzo, Marocco Adriano

机构信息

a IMBIO Institute of Molecular Physiology and Biotechnology of Plants , University of Bonn , Bonn , Germany.

b Institut für Organische Chemie , Universität Leipzig , Leipzig , Germany.

出版信息

Plant Signal Behav. 2017 Aug 3;12(8):e1358843. doi: 10.1080/15592324.2017.1358843. Epub 2017 Aug 8.

Abstract

A facultative, microbial micro-community colonizing roots of Abutilon theophrasti Medik. supports the plant in detoxifying hydroxylated benzoxazolinones. The root micro-community is composed of several fungi and bacteria with Actinomucor elegans as a dominant species. The yeast Papiliotrema baii and the bacterium Pantoea ananatis are actively involved in the detoxification of hydroxylated benzoxazolinones by generating HO. At the root surface, laccases, peroxidases and polyphenol oxidases cooperate for initiating polymerization reactions, whereby enzyme combinations seem to differ depending on the hydroxylation position of BOA-OHs. A glucosyltransferase, able to glucosylate the natural benzoxazolinone detoxification intermediates BOA-5- and BOA-6-OH, is thought to reduce oxidative overshoots by damping BOA-OH induced HO generation. Due to this detoxification network, growth of Abutilon theophrasti seedlings is not suppressed by BOA-OHs. Polymer coats have no negative influence. Alternatively, quickly degradable 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one can be produced by the micro-community member Pantoea ananatis at the root surfaces. The results indicate that Abutilon theophrasti has evolved an efficient strategy by recruiting soil microorganisms with special abilities for different detoxification reactions which are variable and may be triggered by the allelochemical´s structure and by environmental conditions.

摘要

一个定殖于苘麻(Abutilon theophrasti Medik.)根部的兼性微生物微群落帮助植物对羟基化苯并恶唑啉酮进行解毒。根部微群落由几种真菌和细菌组成,雅致放射毛霉(Actinomucor elegans)是优势物种。酵母巴氏蝶形酵母(Papiliotrema baii)和细菌菠萝泛菌(Pantoea ananatis)通过产生HO积极参与羟基化苯并恶唑啉酮的解毒过程。在根表面,漆酶、过氧化物酶和多酚氧化酶协同启动聚合反应,不同酶的组合似乎取决于BOA-OHs的羟基化位置。一种能够将天然苯并恶唑啉酮解毒中间体BOA-5-和BOA-6-OH糖基化的葡糖基转移酶,被认为通过抑制BOA-OH诱导的HO产生来减少氧化过冲。由于这个解毒网络,苘麻幼苗的生长不会受到BOA-OHs的抑制。聚合物涂层没有负面影响。此外,微群落成员菠萝泛菌可以在根表面产生可快速降解的6-羟基-5-硝基苯并[d]恶唑-2(3H)-酮。结果表明,苘麻通过招募具有特殊能力的土壤微生物来进行不同的解毒反应,形成了一种有效的策略,这些反应是可变的,可能由化感物质的结构和环境条件触发。

相似文献

1
Interspecies-cooperations of abutilon theophrasti with root colonizing microorganisms disarm BOA-OH allelochemicals.
Plant Signal Behav. 2017 Aug 3;12(8):e1358843. doi: 10.1080/15592324.2017.1358843. Epub 2017 Aug 8.
2
Abutilon theophrasti's defense against the allelochemical benzoxazolin-2(3H)-one: support by Actinomucor elegans.
J Chem Ecol. 2014 Dec;40(11-12):1286-98. doi: 10.1007/s10886-014-0529-7. Epub 2014 Nov 29.
3
6-Hydroxy-5-nitrobenzo[]oxazol-2(3)-one-A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3)-one produced by .
Commun Integr Biol. 2017 Mar 13;10(3):e1302633. doi: 10.1080/19420889.2017.1302633. eCollection 2017.
4
BOA detoxification of four summer weeds during germination and seedling growth.
J Chem Ecol. 2012 Jul;38(7):933-46. doi: 10.1007/s10886-012-0136-4. Epub 2012 May 22.
6
Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.
Plant Signal Behav. 2016;11(1):e1119962. doi: 10.1080/15592324.2015.1119962.
9
Detoxification and transcriptome response in Arabidopsis seedlings exposed to the allelochemical benzoxazolin-2(3H)-one.
J Biol Chem. 2005 Jun 10;280(23):21867-81. doi: 10.1074/jbc.M500694200. Epub 2005 Apr 11.

引用本文的文献

本文引用的文献

1
6-Hydroxy-5-nitrobenzo[]oxazol-2(3)-one-A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3)-one produced by .
Commun Integr Biol. 2017 Mar 13;10(3):e1302633. doi: 10.1080/19420889.2017.1302633. eCollection 2017.
2
Towards an integrated phylogenetic classification of the Tremellomycetes.
Stud Mycol. 2015 Jun;81:85-147. doi: 10.1016/j.simyco.2015.12.001. Epub 2016 Jan 8.
3
Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L.
Plant Signal Behav. 2016;11(1):e1119962. doi: 10.1080/15592324.2015.1119962.
4
Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis.
Plant Physiol. 2016 Feb;170(2):686-701. doi: 10.1104/pp.15.01671. Epub 2015 Dec 1.
5
Plants Release Precursors of Histone Deacetylase Inhibitors to Suppress Growth of Competitors.
Plant Cell. 2015 Nov;27(11):3175-89. doi: 10.1105/tpc.15.00585. Epub 2015 Nov 3.
7
Nitration of plant apoplastic proteins from cell suspension cultures.
J Proteomics. 2015 Apr 29;120:158-68. doi: 10.1016/j.jprot.2015.03.002. Epub 2015 Mar 21.
8
Abutilon theophrasti's defense against the allelochemical benzoxazolin-2(3H)-one: support by Actinomucor elegans.
J Chem Ecol. 2014 Dec;40(11-12):1286-98. doi: 10.1007/s10886-014-0529-7. Epub 2014 Nov 29.
9
Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants.
ISME J. 2013 Dec;7(12):2248-58. doi: 10.1038/ismej.2013.119. Epub 2013 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验