Suppr超能文献

在 Cu(111)表面上通过新的表面合成方法得到 5-扶手椅型石墨烯纳米带。

A new on-surface synthetic pathway to 5-armchair graphene nanoribbons on Cu(111) surfaces.

机构信息

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials &devices, Soochow University, Suzhou 215123, P. R. China.

出版信息

Faraday Discuss. 2017 Oct 26;204:297-305. doi: 10.1039/c7fd00129k.

Abstract

We report a new pathway to fabricate armchair graphene nanoribbons with five carbon atoms in the cross section (5-AGNRs) on Cu(111) surfaces. Instead of using haloaromatics as precursors, the 5-AGNRs are synthesized via a surface assisted decarboxylation reaction of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). The on-surface decarboxylation of PTCDA can produce extended copper-perylene chains on Cu(111) that are able to transform into graphene nanoribbons after annealing at higher temperatures (ca. 630 K). Due to the low yield (ca. 20%) of GNRs upon copper extrusion, various gases are introduced to assist the transformation of the copper-perylene chains into the GNRs. Typical reducing gases (H and CO) and oxidizing gas (O) are evaluated for their performance in breaking aryl-Cu bonds. This method enriches on-surface protocols for the synthesis of AGNRs using non-halogen containing precursors.

摘要

我们报告了一种在 Cu(111)表面上制造横截面为五个碳原子的扶手椅型石墨烯纳米带(5-AGNRs)的新途径。该途径不使用卤代芳烃作为前体,而是通过对苯二甲酸酐(PTCDA)的表面辅助脱羧反应合成 5-AGNRs。PTCDA 的表面脱羧可以在 Cu(111)上产生扩展的铜-苝链,这些链在较高温度(约 630 K)退火后能够转化为石墨烯纳米带。由于铜挤压后 GNRs 的产率(约 20%)较低,因此引入了各种气体来辅助铜-苝链转化为 GNRs。典型的还原气体(H 和 CO)和氧化气体(O)被评估了它们在断裂芳基-Cu 键方面的性能。该方法丰富了使用不含卤素的前体合成 AGNRs 的表面方法。

相似文献

1
A new on-surface synthetic pathway to 5-armchair graphene nanoribbons on Cu(111) surfaces.
Faraday Discuss. 2017 Oct 26;204:297-305. doi: 10.1039/c7fd00129k.
2
On-Surface Synthesis of 8- and 10-Armchair Graphene Nanoribbons.
Small. 2019 Apr;15(15):e1804526. doi: 10.1002/smll.201804526. Epub 2019 Mar 20.
6
Quality control of on-surface-synthesised seven-atom wide armchair graphene nanoribbons.
Nanoscale. 2020 Mar 28;12(12):6651-6657. doi: 10.1039/c9nr10942k. Epub 2020 Mar 16.
7
Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons.
J Am Chem Soc. 2017 Jul 19;139(28):9483-9486. doi: 10.1021/jacs.7b05055. Epub 2017 Jul 6.
8
Chemical Vapor Deposition Synthesis and Terahertz Photoconductivity of Low-Band-Gap N = 9 Armchair Graphene Nanoribbons.
J Am Chem Soc. 2017 Mar 15;139(10):3635-3638. doi: 10.1021/jacs.7b00776. Epub 2017 Mar 6.
9
A modular synthetic approach for band-gap engineering of armchair graphene nanoribbons.
Nat Commun. 2018 Apr 27;9(1):1687. doi: 10.1038/s41467-018-03747-2.
10
Ultra-Narrow Low-Bandgap Graphene Nanoribbons from Bromoperylenes-Synthesis and Terahertz-Spectroscopy.
Chemistry. 2017 Apr 6;23(20):4870-4875. doi: 10.1002/chem.201605859. Epub 2017 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验