Caillaud Celine, Renversez Gilles, Brilland Laurent, Mechin David, Calvez Laurent, Adam Jean-Luc, Troles Johann
Glasses and Ceramics Group, Institut des Sciences Chimiques de Rennes, University of Rennes 1, 35042 Rennes Cedex, France.
Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France.
Materials (Basel). 2014 Aug 26;7(9):6120-6129. doi: 10.3390/ma7096120.
An original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized. The fibers are made of an AsSe matrix, with inclusions of TeAsSe glass that shows a higher refractive index ( = 2.9). In those fibers, several transmission bands have been observed in mid infrared depending on the geometry. In addition, for the first time, propagation by photonic bandgap effect in an all-chalcogenide MOF has been observed at 3.39 µm, 9.3 µm, and 10.6 µm. The numerical simulations based on the optogeometric properties of the fibers agree well with the experimental characterizations.
一种获得具有特殊色散和单模特性光纤的原始方法是考虑微结构光纤(MOF)。由于其几何结构设计具有高度自由度,这些光纤呈现出独特的光学特性。在本研究中,首次实现了具有光子带隙传输特性的全固态全硫属化物微结构光纤,并对其进行了光学表征。这些光纤由AsSe基质制成,包含折射率较高(n = 2.9)的TeAsSe玻璃。在这些光纤中,根据几何结构在中红外波段观察到了几个传输带。此外,首次在3.39 µm、9.3 µm和10.6 µm波长处观察到全硫属化物微结构光纤中的光子带隙效应传播。基于光纤光几何特性的数值模拟与实验表征结果吻合良好。