Hu Xiaobin, Wei Xin
Opt Express. 2017 Jun 26;25(13):15208-15215. doi: 10.1364/OE.25.015208.
Existing metasurfaces for high efficiency optical phase control in transmission mode are all based on dielectric materials. Metallic metasurfaces for optical phase control in transmission mode never achieved efficiency above 40%. In this paper, we theoretically demonstrate that metallic metasurface constructed by thick nanoparticles can realize high efficiency (above 85%) phase control in optical wavelength range. We investigated the resonant properties of thick nanoparticle arrays and found that bulk magnetic resonance can be formed by antiparallel dipole electric resonances on thick nanoparticles' sidewalls. In addition, lateral Fabry-Perot (FP) resonance can be generated in the cavity constituted by adjacent thick nanoparticles. Both of the two resonances exhibit high transmission with near-zero reflection. What's more, the lateral FP resonance can be utilized to manipulate transmitted phase with high efficiency by adjusting the length of thick nanoparticles. The method proposed here may induce a series of new metasurfaces based on thick nanoparticles for various applications.
现有的用于传输模式下高效光学相位控制的超表面均基于介电材料。用于传输模式下光学相位控制的金属超表面的效率从未超过40%。在本文中,我们从理论上证明,由厚纳米颗粒构成的金属超表面能够在光波长范围内实现高效(高于85%)的相位控制。我们研究了厚纳米颗粒阵列的共振特性,发现厚纳米颗粒侧壁上的反平行偶极子电共振可形成体磁共振。此外,在由相邻厚纳米颗粒构成的腔内可产生横向法布里-珀罗(FP)共振。这两种共振均表现出高透射率且反射近零。更重要的是,通过调整厚纳米颗粒的长度,横向FP共振可用于高效操纵透射相位。本文提出的方法可能会催生一系列基于厚纳米颗粒的新型超表面,用于各种应用。