Suppr超能文献

镍 - 钇稳定氧化锆阳极中的3D微观结构效应:有效传输性能的预测及氧化还原稳定性的优化

3D Microstructure Effects in Ni-YSZ Anodes: Prediction of Effective Transport Properties and Optimization of Redox Stability.

作者信息

Pecho Omar M, Stenzel Ole, Iwanschitz Boris, Gasser Philippe, Neumann Matthias, Schmidt Volker, Prestat Michel, Hocker Thomas, Flatt Robert J, Holzer Lorenz

机构信息

Institute of Computational Physics, Zurich University of Applied Sciences, Winterthur 8400, Switzerland.

Institute for Building Materials, ETH Zurich, Zurich 8093, Switzerland.

出版信息

Materials (Basel). 2015 Aug 26;8(9):5554-5585. doi: 10.3390/ma8095265.

Abstract

This study investigates the influence of microstructure on the effective ionic and electrical conductivities of Ni-YSZ (yttria-stabilized zirconia) anodes. Fine, medium, and coarse microstructures are exposed to redox cycling at 950 °C. FIB (focused ion beam)-tomography and image analysis are used to quantify the effective (connected) volume fraction (Φ), constriction factor (β), and tortuosity (τ). The effective conductivity (σ) is described as the product of intrinsic conductivity (σ₀) and the so-called microstructure-factor (): σ σ₀*. Two different methods are used to evaluate the M-factor: (1) by prediction using a recently established relationship, εβ⁰/τ, and (2) by numerical simulation that provides conductivity, from which the simulated M-factor can be deduced (). Both methods give complementary and consistent information about the effective transport properties and the redox degradation mechanism. The initial microstructure has a strong influence on effective conductivities and their degradation. Finer anodes have higher initial conductivities but undergo more intensive Ni coarsening. Coarser anodes have a more stable Ni phase but exhibit lower YSZ stability due to lower sintering activity. Consequently, in order to improve redox stability, it is proposed to use mixtures of fine and coarse powders in different proportions for functional anode and current collector layers.

摘要

本研究考察了微观结构对镍 - 钇稳定氧化锆(Ni-YSZ)阳极有效离子电导率和电导率的影响。将细、中、粗三种微观结构在950℃下进行氧化还原循环。使用聚焦离子束断层扫描(FIB)和图像分析来量化有效(连通)体积分数(Φ)、收缩因子(β)和曲折度(τ)。有效电导率(σ)被描述为本征电导率(σ₀)与所谓微观结构因子()的乘积:σ = σ₀× 。使用两种不同方法评估M因子:(1)通过使用最近建立的关系式εβ⁰/τ进行预测,以及(2)通过提供电导率的数值模拟,从中推导出模拟M因子()。两种方法都给出了关于有效传输特性和氧化还原降解机制的互补且一致的信息。初始微观结构对有效电导率及其降解有很大影响。较细的阳极具有较高的初始电导率,但会经历更强烈的镍粗化。较粗的阳极具有更稳定的镍相,但由于烧结活性较低,YSZ稳定性较低。因此,为了提高氧化还原稳定性,建议在功能阳极层和集流体层中使用不同比例的细粉和粗粉混合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验