Vianzon Vianca, Illek Beate, Moe Gregory R
Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA.
Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, California, USA
Clin Vaccine Immunol. 2017 Oct 5;24(10). doi: 10.1128/CVI.00188-17. Print 2017 Oct.
Capsular polysaccharide-protein conjugate vaccines protect individuals from invasive disease and decrease carriage, which reduces spread of the organism in the population. In contrast, antibodies elicited by plain polysaccharide or protein antigen-based meningococcal (Men) vaccines have little or no effect on decreasing carriage. In this study, we investigated the mechanism by which vaccine-induced human immunoglobulin G (IgG) antibodies affect colonization by meningococcal serogroup B (MenB) or C (MenC) strains using a human bronchial epithelial cell culture model (16HBE14o-). Fluorescence microscopy showed that bacteria colonizing the apical side of 16HBE14o- monolayers had decreased capsular polysaccharide on the bacterial surface that resulted from shedding the capsule and not decreased production of polysaccharide. Capsular polysaccharide shedding depended on the presence of 16HBE14o- cells and bacteria but not direct adherence of the bacteria to the cells. Treatment of bacteria and cells with postimmunization MenC-conjugate IgG or murine anti-MenB polysaccharide monoclonal antibodies (MAbs) inhibited capsule shedding, microcolony dispersal, and invasion of the 16HBE14o- cell monolayer. In contrast, the IgG responses elicited by immunization with MenC polysaccharide (PS), MenB outer membrane vesicle (OMV)-based, or factor H binding protein (FHbp)-based vaccines were not different than preimmune IgG or no-treatment response. The results provide new insights on the mechanism by which high-avidity anticapsular antibodies elicited by polysaccharide-conjugate vaccines affect meningococcal colonization. The data also suggest that any effect on colonization by IgG elicited by OMV- or FHbp-based vaccines may involve a different mechanism.
荚膜多糖-蛋白质结合疫苗可保护个体免受侵袭性疾病的侵害,并减少带菌状态,从而降低该病原体在人群中的传播。相比之下,基于普通多糖或蛋白质抗原的脑膜炎球菌(Men)疫苗所引发的抗体对减少带菌状态几乎没有影响。在本研究中,我们使用人支气管上皮细胞培养模型(16HBE14o-),研究了疫苗诱导的人免疫球蛋白G(IgG)抗体影响B群(MenB)或C群(MenC)脑膜炎球菌菌株定植的机制。荧光显微镜检查显示,在16HBE14o-单层细胞顶端定植的细菌,其表面荚膜多糖减少,这是由于荚膜脱落而非多糖产生减少所致。荚膜多糖的脱落取决于16HBE14o-细胞和细菌的存在,但并非细菌与细胞的直接黏附。用免疫后的MenC结合IgG或鼠抗MenB多糖单克隆抗体(MAb)处理细菌和细胞,可抑制荚膜脱落、微菌落扩散以及16HBE14o-细胞单层的侵袭。相比之下,用MenC多糖(PS)、基于MenB外膜囊泡(OMV)或基于因子H结合蛋白(FHbp)的疫苗免疫所引发的IgG反应,与免疫前IgG或未处理反应并无差异。这些结果为多糖结合疫苗引发的高亲和力抗荚膜抗体影响脑膜炎球菌定植的机制提供了新的见解。数据还表明,基于OMV或FHbp的疫苗所引发的IgG对定植的任何影响可能涉及不同的机制。