Suppr超能文献

染色体拓扑结构引导果蝇剂量补偿复合体激活靶基因。

Chromosome topology guides the Drosophila Dosage Compensation Complex for target gene activation.

作者信息

Schauer Tamás, Ghavi-Helm Yad, Sexton Tom, Albig Christian, Regnard Catherine, Cavalli Giacomo, Furlong Eileen Em, Becker Peter B

机构信息

Molecular Biology Division, Biomedical Center and Center for Integrated Protein Science Ludwig-Maximilians-University, Munich, Germany.

European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.

出版信息

EMBO Rep. 2017 Oct;18(10):1854-1868. doi: 10.15252/embr.201744292. Epub 2017 Aug 9.

Abstract

X chromosome dosage compensation in Drosophila requires chromosome-wide coordination of gene activation. The male-specific lethal dosage compensation complex (DCC) identifies and binds to X-chromosomal high-affinity sites (HAS) from which it boosts transcription. A sub-class of HAS, PionX sites, represent first contacts on the X. Here, we explored the chromosomal interactions of representative PionX sites by high-resolution 4C and determined the global chromosome conformation by Hi-C in sex-sorted embryos. Male and female X chromosomes display similar nuclear architecture, concordant with clustered, constitutively active genes. PionX sites, like HAS, are evenly distributed in the active compartment and engage in short- and long-range interactions beyond compartment boundaries. Long-range, inter-domain interactions between DCC binding sites are stronger in males, suggesting that the complex refines chromatin organization. By de novo induction of DCC in female cells, we monitored the extent of activation surrounding PionX sites. This revealed a remarkable range of DCC action not only in linear proximity, but also at megabase distance if close in space, suggesting that DCC profits from pre-existing chromosome folding to activate genes.

摘要

果蝇中的X染色体剂量补偿需要全染色体范围的基因激活协调。雄性特异性致死剂量补偿复合体(DCC)识别并结合X染色体高亲和力位点(HAS),并从该位点增强转录。HAS的一个子类,即PionX位点,代表了与X染色体的首次接触。在这里,我们通过高分辨率4C技术探索了代表性PionX位点的染色体相互作用,并通过Hi-C技术确定了性别分选胚胎中的全基因组染色体构象。雄性和雌性X染色体显示出相似的核结构,与聚集的、组成型活跃基因一致。PionX位点与HAS一样,均匀分布在活跃区室中,并参与跨越区室边界的短程和长程相互作用。雄性中DCC结合位点之间的长程、域间相互作用更强,这表明该复合体优化了染色质组织。通过在雌性细胞中从头诱导DCC,我们监测了PionX位点周围的激活程度。这不仅揭示了DCC作用在直线距离上的显著范围,而且如果在空间上接近,在兆碱基距离上也有显著范围,这表明DCC受益于预先存在的染色体折叠来激活基因。

相似文献

1
Chromosome topology guides the Drosophila Dosage Compensation Complex for target gene activation.
EMBO Rep. 2017 Oct;18(10):1854-1868. doi: 10.15252/embr.201744292. Epub 2017 Aug 9.
2
Condensin-driven remodelling of X chromosome topology during dosage compensation.
Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.
3
PionX sites mark the X chromosome for dosage compensation.
Nature. 2016 Sep 8;537(7619):244-248. doi: 10.1038/nature19338. Epub 2016 Aug 31.
4
Different chromatin interfaces of the Drosophila dosage compensation complex revealed by high-shear ChIP-seq.
Genome Res. 2013 Mar;23(3):473-85. doi: 10.1101/gr.146407.112. Epub 2012 Dec 11.
5
Divergent evolution toward sex chromosome-specific gene regulation in .
Genes Dev. 2021 Jul 1;35(13-14):1055-1070. doi: 10.1101/gad.348411.121. Epub 2021 Jun 17.
6
The chromosomal high-affinity binding sites for the Drosophila dosage compensation complex.
PLoS Genet. 2008 Dec;4(12):e1000302. doi: 10.1371/journal.pgen.1000302. Epub 2008 Dec 12.
7
Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex.
Genes Dev. 2006 Apr 1;20(7):858-70. doi: 10.1101/gad.1399406. Epub 2006 Mar 17.
8
Targeting determinants of dosage compensation in Drosophila.
PLoS Genet. 2006 Feb;2(2):e5. doi: 10.1371/journal.pgen.0020005. Epub 2006 Feb 3.

引用本文的文献

1
Genetic variation in recalcitrant repetitive regions of the genome.
Genome Res. 2025 Aug 5. doi: 10.1101/gr.280728.125.
2
Sex Chromosome Dosage Compensation in Insects.
Insects. 2025 Feb 4;16(2):160. doi: 10.3390/insects16020160.
3
N-terminus of MSL1 is critical for dosage compensation.
Elife. 2024 Dec 19;13:RP93241. doi: 10.7554/eLife.93241.
4
Development and evolution of Drosophila chromatin landscape in a 3D genome context.
Nat Commun. 2024 Nov 1;15(1):9452. doi: 10.1038/s41467-024-53892-0.
6
Evolution and regulation of animal sex chromosomes.
Nat Rev Genet. 2025 Jan;26(1):59-74. doi: 10.1038/s41576-024-00757-3. Epub 2024 Jul 18.
7
Genetic variation in recalcitrant repetitive regions of the genome.
bioRxiv. 2024 Jun 12:2024.06.11.598575. doi: 10.1101/2024.06.11.598575.
9
Crosstalk between chromatin and Shavenbaby defines transcriptional output along the Drosophila intestinal stem cell lineage.
iScience. 2023 Dec 3;27(1):108624. doi: 10.1016/j.isci.2023.108624. eCollection 2024 Jan 19.
10
Mode and Tempo of 3D Genome Evolution in Drosophila.
Mol Biol Evol. 2022 Nov 3;39(11). doi: 10.1093/molbev/msac216.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验