Anthony Sajitha A, Burrell Anika L, Johnson Matthew C, Duong-Ly Krisna C, Kuo Yin-Ming, Simonet Jacqueline C, Michener Peter, Andrews Andrew, Kollman Justin M, Peterson Jeffrey R
Cancer Biology Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111.
Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357350, Seattle, WA 98195.
Mol Biol Cell. 2017 Aug 9;28(20):2600-8. doi: 10.1091/mbc.E17-04-0263.
Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.
几种代谢酶会经历可逆聚合形成大分子组装体。这些组装体的功能通常尚不清楚,但在某些情况下,它们会调节酶活性和代谢稳态。鸟嘌呤核苷酸生物合成酶肌苷单磷酸脱氢酶(IMPDH)形成八聚体,这些八聚体聚合成螺旋链。在哺乳动物细胞中,IMPDH细丝可以结合形成微米长度的组装体。聚合作用和酶活性部分受嘌呤核苷酸与变构调节域结合的调控。ATP促进八聚体聚合,而GTP促进形成紧密的无活性构象,其聚合能力未知。同样不清楚的是聚合作用是否直接改变IMPDH的催化活性。为了解决这个问题,我们鉴定了人IMPDH2的点突变体,这些突变体要么阻止要么促进聚合作用。出乎意料的是,我们发现重组IMPDH的聚合形式和非组装形式具有相当的催化活性、底物亲和力和GTP敏感性,并在细胞中验证了这一发现。电子显微镜显示,底物和变构核苷酸会改变八聚体和细丝中活性和无活性构象之间的平衡。与其他选择性稳定活性或无活性构象的代谢细丝不同,重组IMPDH细丝容纳多种状态。这些构象状态通过底物可用性和嘌呤平衡进行微调,而聚合作用可能允许状态之间的协同转变。