Suppr超能文献

石墨烯材料对消炎药物尼美舒利的吸附:一项理论与实验相结合的研究

Adsorption of anti-inflammatory nimesulide by graphene materials: a combined theoretical and experimental study.

作者信息

Jauris I M, Matos C F, Zarbin A J G, Umpierres C S, Saucier C, Lima E C, Fagan S B, Zanella I, Machado F M

机构信息

Technological Sciences Area, UNIFRA, Santa Maria, RS, Brazil.

出版信息

Phys Chem Chem Phys. 2017 Aug 23;19(33):22099-22110. doi: 10.1039/c7cp04272h.

Abstract

Interactions of anti-inflammatory nimesulide (NM) with different graphene material species were explored employing both ab initio calculations, based on Density Functional Theory (DFT), and a batch adsorption process. The adsorption of NM onto graphene, with and without a vacancy, reduced graphene oxide (rGO) and functionalized graphene nanoribbons was simulated, providing a good understanding of the adsorption process of the NM molecule onto graphene material surfaces. The theoretical results indicate a physisorption interaction between NM and all of the evaluated adsorbents. Based on batch adsorption experiments, it was found that rGO, obtained via a modified Hummers method, is a good nanoadsorbent for the removal of the anti-inflammatory NM from aqueous solutions. The general-order kinetic equation displays the best fit to the experimental data compared with pseudo-first order and pseudo-second order kinetics. The equilibrium data fitted well into the Liu isotherm equation, and the maximum sorption capacity for the adsorption of NM by rGO was 82.4 mg g at 25 °C. Our results of the first principle calculations and the batch adsorption experiments point out that graphene materials are promising nanomaterials for extracting NM from aqueous solutions.

摘要

采用基于密度泛函理论(DFT)的从头算计算方法和批量吸附过程,研究了抗炎药物尼美舒利(NM)与不同种类石墨烯材料的相互作用。模拟了NM在有和没有空位的石墨烯、还原氧化石墨烯(rGO)以及功能化石墨烯纳米带上的吸附情况,从而深入了解NM分子在石墨烯材料表面的吸附过程。理论结果表明,NM与所有评估的吸附剂之间存在物理吸附相互作用。基于批量吸附实验发现,通过改进的Hummers方法制备的rGO是从水溶液中去除抗炎药物NM的良好纳米吸附剂。与伪一级动力学和伪二级动力学相比,广义动力学方程对实验数据的拟合效果最佳。平衡数据很好地符合Liu等温线方程,在25℃下,rGO对NM的最大吸附容量为82.4 mg/g。我们的第一性原理计算和批量吸附实验结果表明,石墨烯材料是从水溶液中提取NM的有前景的纳米材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验