Maitani M M, Tanaka K, Shen Q, Toyoda T, Wada Y
School of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan.
Phys Chem Chem Phys. 2017 Aug 23;19(33):22129-22140. doi: 10.1039/c7cp03593d.
Dye-sensitized solar cells (DSSCs) with reactive {001} facet-dominant TiO have attracted a great deal of attention owing to their high solar cell performance, despite the origin and the variation of the results being controversial. Here, we report the characteristic charge transport properties of DSSCs composed of {001} and {101} facet-dominant TiO nanoparticles in order to explain the origin of solar cell performance. Based on transient photocurrent and photovoltage measurements and transient absorption spectroscopy, the energetics of TiO semiconductors and dye sensitizers are utilized to understand the electron diffusion, recombination, and injection kinetics to determine solar cell performance. Novel strategies to improve DSSC performance by utilizing the characteristics of {001} facet-dominant TiO nanoparticles are proposed, which are (1) enhancement of electron injection and (2) reduction of carrier recombination for J and V improvement, despite the drawback of slower electron diffusion in the mesoporous network of {001} facet-dominant TiO.
具有反应性{001}面为主的TiO₂的染料敏化太阳能电池(DSSC),尽管其结果的起源和变化存在争议,但因其高太阳能电池性能而备受关注。在此,我们报告了由{001}和{101}面为主的TiO₂纳米颗粒组成的DSSC的特征电荷传输特性,以解释太阳能电池性能的起源。基于瞬态光电流和光电压测量以及瞬态吸收光谱,利用TiO₂半导体和染料敏化剂的能量学来理解电子扩散、复合和注入动力学,以确定太阳能电池性能。提出了利用{001}面为主的TiO₂纳米颗粒的特性来提高DSSC性能的新策略,即(1)增强电子注入和(2)减少载流子复合以提高J和V,尽管{001}面为主的TiO₂的介孔网络中电子扩散较慢存在缺点。